Advertisement

Physics of the Solid State

, Volume 55, Issue 9, pp 1884–1891 | Cite as

Structure-mediated transition in the behavior of elastic and inelastic properties of beach tree bio-carbon

  • B. K. Kardashev
  • T. S. Orlova
  • B. I. Smirnov
  • A. Gutierrez
  • J. Ramirez-Rico
Mechanical Properties, Physics of Strength, and Plasticity

Abstract

Microstructural characteristics and amplitude dependences of the Young modulus E and of internal friction (logarithmic decrement δ) of bio-carbon matrices prepared from beech tree wood at different carbonization temperatures T carb ranging from 600 to 1600°C have been studied. The dependences E(T carb) and δ(T carb) thus obtained revealed two linear regions of increase of the Young modulus and of decrease of the decrement with increasing carbonization temperature, namely, ΔEAΔT carb and Δδ ∼ BΔT carb, with A ≈ 13.4 MPa/K and B ≈ −2.2 × 10−6 K−1 for T carb < 1000°C and A ≈ 2.5 MPa/K and B ≈ −3.0 × 10−7 K−1 for T carb > 1000°C. The transition observed in the behavior of E(T carb) and δ(T carb) at T carb = 900–1000°C can be assigned to a change of sample microstructure, more specifically, a change in the ratio of the fractions of the amorphous matrix and of the nanocrystalline phase. For T carb < 1000°C, the elastic properties are governed primarily by the amorphous matrix, whereas for T carb > 1000°C the nanocrystalline phase plays the dominant part. The structurally induced transition in the behavior of the elastic and microplastic characteristics at a temperature close to 1000°C correlates with the variation of the physical properties, such as electrical conductivity, thermal conductivity, and thermopower, reported in the literature.

Keywords

Carb Young Modulus Amorphous Matrix Tree Wood Carbonization Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Byrne and D. C. Nagle, Carbon 35, 267 (1997).CrossRefGoogle Scholar
  2. 2.
    P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).CrossRefGoogle Scholar
  3. 3.
    C. Zollfrank and H. Siber, J. Eur. Ceram. Soc. 24, 495 (2004).CrossRefGoogle Scholar
  4. 4.
    A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gon-zalez, C. Dominguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1(1), 56 (2004).CrossRefGoogle Scholar
  5. 5.
    F. M. Varela-Feria, PhD Thesis (Universidad de Sevilla, Sevilla, Spain, 2004).Google Scholar
  6. 6.
    A. K. Kercher and D. C. Nagle, Carbon 40, 1321 (2002).CrossRefGoogle Scholar
  7. 7.
    V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428, 225 (2006).CrossRefGoogle Scholar
  8. 8.
    V. V. Shpeizman, N. N. Peschanskaya, T. S. Orlova, and B. I. Smirnov, Phys. Solid State 51(12), 2458 (2009).CrossRefGoogle Scholar
  9. 9.
    T. E. Wilkes, J. Y. Pastor, J. Liorca, and K. T. Faber, J. Mater. Res. 23, 1732 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    T. E. Wilkes, M. L. Young, R. E. Sepulveda, D. C. Dunand, and K. T. Faber, Scr. Mater. 55, 1083 (2006).CrossRefGoogle Scholar
  11. 11.
    B. K. Kardashev, T. S. Orlova, B. I. Smirnov, T. E. Wilkes, and K. T. Faber, Phys. Solid State 50(10), 1882 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    P. Sebo and P. Stefanik, Int. J. Mater. Prod. Technol. 18, 141 (2003).Google Scholar
  13. 13.
    J. Kovacik and J. Bielek, Scr. Mater. 35, 151 (1996).CrossRefGoogle Scholar
  14. 14.
    L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, and K. T. Faber, Phys. Solid State 52(7), 1348 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 48(3), 441 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 50(12), 2245 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 51(10), 2023 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52(6), 1115 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    A. K. Kercher and D. C. Nagle, Carbon 41, 15 (2003).CrossRefGoogle Scholar
  20. 20.
    V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martínez-Fernandez, Phys. Solid State 53(2), 276 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51(11), 2247 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    I. A. Smirnov, B. I. Smirnov, T. S. Orlova, Cz. Sulkovski, H. Misiorek, A. Jezowski, and J. Mucha, Phys. Solid State 53(11), 2244 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, and M. C. Vera, Phys. Solid State 53(11), 2398 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    B. K. Kardashev, T. S. Orlova, B. I. Smirnov, T. E. Wilkes, and K. T. Faber, Phys. Solid State 51(12), 2463 (2009).CrossRefGoogle Scholar
  25. 25.
    B. K. Kardashev, Yu. A. Burenkov, B. I. Smirnov, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 47(5), 886 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    B. K. Kardashev, T. S. Orlova, B. I. Smirnov, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 52(10), 2076 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    M. A. Bautista, A. R. de Arellano-Lopez, J. Martnez-Fernandez, A. Bravo-Leon, and J. M. Lopez-Cepero, Int. J. Refract. Met. Hard Mater. 27, 431 (2009).CrossRefGoogle Scholar
  28. 28.
    F. Tunistra and J. L. Koenig, J. Chem. Phys. 53(3), 1126 (1970).ADSCrossRefGoogle Scholar
  29. 29.
    S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Inelasticity of Crystals (Nauka, Moscow, 1985) [in Russian].Google Scholar
  30. 30.
    M. T. Johnson and K. T. Faber, J. Mater. Res. 26, 18 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    J. Martínez-Fernandez, A. Munoz, A. R. de Arellano-Lopez, F. M. Varela-Feria, A. Domínguez-Rodríguez, and M. Singh, Acta Mater. 51, 3259 (2003).CrossRefGoogle Scholar
  32. 32.
    A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Carbon 43, 1731 (2005).CrossRefGoogle Scholar
  33. 33.
    J. G. Hernandez, I. Hernandez-Calderon, C. A. Luengo, and R. Tsu, Carbon 20, 201 (1982).CrossRefGoogle Scholar
  34. 34.
    B. K. Kardashev, B. I. Smirnov, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Mater. Sci. Eng., A 442, 444 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • B. K. Kardashev
    • 1
  • T. S. Orlova
    • 1
  • B. I. Smirnov
    • 1
  • A. Gutierrez
    • 2
  • J. Ramirez-Rico
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Departamento de Fisica de la Materia Condensada — Instituto de Ciencia de Materiales de Sevilla (ICMSE)Universidad de SevillaSevillaSpain

Personalised recommendations