Physics of the Solid State

, Volume 55, Issue 8, pp 1718–1724 | Cite as

Preparation of colloidal films with different degrees of disorder from monodisperse spherical silica particles

  • D. A. Eurov
  • D. A. Kurdyukov
  • E. Yu. Trofimova
  • S. A. Yakovlev
  • L. V. Sharonova
  • A. V. Shvidchenko
  • V. G. Golubev
Low-Dimensional Systems

Abstract

The process of coagulation of suspensions of monodisperse spherical silica particles driven by appropriate coagulants (NH4Cl, HCl, C16H33N(CH3)3Br) has been studied. Films of photonic crystals and photonic glasses have been grown by the sedimentation method. The possibility of controlling the degree of structural disorder in colloidal films by properly varying the resistance of the water suspension of particles to aggregation has been demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.1.Google Scholar
  2. 2.
    Scattering and Localization of Classical Waves in Random Media, Ed. by P. Sheng (World Scientific, Singapore, 1990).Google Scholar
  3. 3.
    Mesoscopic Phenomena in Solids, Ed. by B. L. Altshuller, P. A. Lee, and R. A. Webb (North-Holland, Amsterdam, 1991).Google Scholar
  4. 4.
    P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, San Diego, 1995).Google Scholar
  5. 5.
    Optical Properties of Photonic Structures: Interplay of Order and Disorder, Ed. by M. F. Limonov and R. M. De La Rue (Taylor and Francis, Boca Raton, 2012).Google Scholar
  6. 6.
    D. Wiersma, Nature (London) 406, 132 (2000).CrossRefGoogle Scholar
  7. 7.
    H. Cao, in Progress in Optics, Ed. by E. Wolf (North-Holland, Amsterdam, 2003), Vol. 45, p. 317.Google Scholar
  8. 8.
    M. A. Noginov, Solid-State Random Lasers (Springer-Verlag, Berlin, 2005), Vol. 105.Google Scholar
  9. 9.
    D. S. Wiersma, Nat. Phys. 4, 359 (2008).CrossRefGoogle Scholar
  10. 10.
    P. D. García, R. Sapienza, Á. Blanco, and C. López, Adv. Mater. (Weinheim) 19, 2597 (2007).CrossRefGoogle Scholar
  11. 11.
    R. Sapienza, P. D. García, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, Phys. Rev. Lett. 99, 233902 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    P. D. García, R. Sapienza, J. Bertolotti, M. D. Martín, Á. Blanco, A. Altube, L. Viña, D. S. Wiersma, and C. López, Phys. Rev. A: At., Mol., Opt. Phys. 78, 023823 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    P. D. García, R. Sapienza, L. S. Froufe-Perez, and C. Lopez, Phys. Rev. B: Condens. Matter 79, 241109 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    P. D. García, R. Sapienza, and C. López, Adv. Mater. (Weinheim) 22, 12 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Gottardo, R. Sapienza, P. D. García, Á. Blanco, D. S. Wiersma, and C. López, Nat. Photonics 2, 429 (2008).CrossRefGoogle Scholar
  16. 16.
    W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
  17. 17.
    E. Yu. Trofimova, A. E. Aleksenskii, S. A. Grudinkin, I. V. Korkin, D. A. Kurdyukov, and V. G. Golubev, Colloid J. 73(4), 546 (2011).CrossRefGoogle Scholar
  18. 18.
    E. A. Ryabenko, A. I. Kuznetsov, B. Z. Shalumov, M. D. Shirokova, O. P. Timakova, and T. S. Litvyakova, Zh. Prikl. Khim. (Leningrad) 50, 1625 (1977).Google Scholar
  19. 19.
    P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999).CrossRefGoogle Scholar
  20. 20.
    G. M. Gajiev, V. G. Golubev, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Sel’kin, and V. V. Travnikov, Phys. Rev. B: Condens. Matter 72, 205115 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    S. A. Grudinkin, S. F. Kaplan, N. F. Kartenko, D. A. Kurdyukov, and V. G. Golubev, J. Phys. Chem. C 112, 17855 (2008).CrossRefGoogle Scholar
  22. 22.
    J. F. Galisteo-López, E. Palacios-Lidon, E. Castillo-Martinez, and C. López, Phys. Rev. B: Condens. Matter 68, 115109 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    R. K. Iler, The Chemistry of Silica (Wiley, New York, 1979).Google Scholar
  24. 24.
    S. A. Grudinkin, N. A. Feoktistov, E. Yu. Trofimova, D. A. Kurdyukov, K. V. Bogdanov, A. V. Baranov, A. V. Fedorov, and V. G. Golubev, Tech. Phys. Lett. 39(4), 341 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    A. B. Pevtsov, S. A. Grudinkin, A. N. Poddubny, S. F. Kaplan, D. A. Kurdyukov, and V. G. Golubev, Semiconductors 44(12), 1537 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    V. G. Golubev, V. Yu. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, Appl. Phys. Lett. 79, 2127 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, A. V. Sel’kin, E. B. Shadrin, A. V. Il’inskii, and R. Boeyink, Semiconductors 36(9), 1043 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    D. A. Mazurenko, R. Kerst, J. I. Dijkhuis A. V. Akimov, V. G. Golubev, A. A. Kaplyanskii, D. A. Kurdyukov, and A. B. Pevtsov, Appl. Phys. Lett. 86, 041114 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    A. B. Pevtsov, D. A. Kurduykov, V. G. Golubev A. V. Akimov, A. M. Meluchev, A. A. Kaplyanskii, A. V. Sel’kin, D. R. Yakovlev, and M. Bayer, Phys. Rev. B: Condens. Matter 75, 153101 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Yamada and K. Yano, Microporous Mesoporous Mater. 93, 190 (2006).CrossRefGoogle Scholar
  31. 31.
    E. Yu. Trofimova, D. A. Kurdyukov, Yu. A. Kukushkina, M. A. Yagovkina, and V. G. Golubev, Glass Phys. Chem. 37(4), 378 (2011).CrossRefGoogle Scholar
  32. 32.
    E. Yu. Trofimova, D. A. Kurdyukov, S. A. Yakovlev, D. A. Kirilenko, Yu. A. Kukushkina, A. V. Nashchekin, A. A. Sitnikova, M. A. Yagovkina, and V. G. Golubev, Nanotechnology 24, 155601 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    E. Yu. Trofimova, S. A. Grudinkin, Yu. A. Kukushkina, D. A. Kurdyukov, A. V. Medvedev, M. A. Yagovkina, and V. G. Golubev, Phys. Solid State 54(6), 1298 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    E.-B. Cho, D. O. Volkov, and I. Sokolov, Small 6, 2314 (2010).CrossRefGoogle Scholar
  35. 35.
    E.-B. Cho, D. O. Volkov, and I. Sokolov, Adv. Funct. Mater. 21, 3129 (2011).CrossRefGoogle Scholar
  36. 36.
    L.-F. Gutiérrez, S. Hamoudi, and K. Belkacemi, Catalysts 1, 97 (2011).CrossRefGoogle Scholar
  37. 37.
    Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control, Ed. by B. Corain, G. Schmid, and N. Toshima (Elsevier, Amsterdam, 2008), p. 383.Google Scholar
  38. 38.
    A. Pokrovsky, C. Y. Lee, V. Kamaev, Z. V. Vardeny, A. Efros, D. Kurdyukov, and V. G. Golubev, Phys. Rev. B: Condens. Matter 71, 165114 (2005).ADSCrossRefGoogle Scholar
  39. 39.
    A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, Phys. Rev. Lett. 101, 033902 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • D. A. Eurov
    • 1
  • D. A. Kurdyukov
    • 1
  • E. Yu. Trofimova
    • 1
  • S. A. Yakovlev
    • 1
  • L. V. Sharonova
    • 1
  • A. V. Shvidchenko
    • 1
  • V. G. Golubev
    • 1
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations