Physics of the Solid State

, Volume 55, Issue 6, pp 1272–1278 | Cite as

Formation of silver nanoparticles on the silicate glass surface after ion exchange

  • P. A. Obraztsov
  • A. V. Nashchekin
  • N. V. Nikonorov
  • A. I. Sidorov
  • A. V. Panfilova
  • P. N. Brunkov
Low-Dimensional Systems


It has been experimentally shown that water vapor thermal treatment of silicate glasses with silver ions introduced by ion exchange leads to the formation of a silver nanoparticle layer with a high packing density on the glass surface. The results of studying the morphology of samples by atomic force and electron microscopy and X-ray spectral analysis of the composition of nanoparticles, as well as the optical density and luminescence spectra in different stages of the treatment, are presented. Mechanisms explaining the processes responsible for silver nanoparticle formation upon water vapor thermal treatment on the glass surface after ion exchange are proposed.


Thermal Treatment Silver Nanoparticles Glass Surface Spectral Interval Scanning Electron Micro Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore 2012).Google Scholar
  2. 2.
    M. Eichelbaum and K. Rademann, Adv. Funct. Mater. 19, 1 (2009).CrossRefGoogle Scholar
  3. 3.
    Y. Chen, J. J. Jaakola, A. Saynatjoki, A. Tervonen, S. Honkanen, J. Raman Spectrosc. 42, 936 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    Silver Nanoparticles, Ed by D. P. Perez (InTech, Vukovar, Croatia, 2010).Google Scholar
  5. 5.
    L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, and N. G. Khlebtsov, Gold Nanoparticles: Synthesis, Properties and Biomedical Applications (Nauka, Moscow, 2008) [in Russian].Google Scholar
  6. 6.
    S. V. Karpov and V. V. Slabko, Optical and Photo-Physical Properties of Fractal Structured Metal Sols (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2003) [in Russian].Google Scholar
  7. 7.
    L. Shang, S. Dong, and G. U. Nienhaus, Nano Today 6, 401 (2011).CrossRefGoogle Scholar
  8. 8.
    B. S. Gonzalez, M. J. Rodriguez, C. Blanco, J. Rivas, M. A. Lopez-Quintela, and J. M. G. Martinho, Nano Lett. 10, 4217 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    A. P. Boltaev, N. A. Penin, A. O. Pogosov, and F. A. Pudonin, JETP 96(5), 940 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    R. A. Ganeev, A. I. Ryasnyanskii, A. L. Stepanov, M. K. Kodirov, and T. Usmanov, Opt. Spectrosc. 95(6), 967 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    A. L. Stepanov, Rev. Adv. Mater. Sci. 4, 45 (2003).Google Scholar
  12. 12.
    A. I. Ignat’ev, A. V. Nashchekin, V. M. Nevedomskii, O. A. Podsvirov, A. I. Sidorov, A. P. Solov’ev, and O. A. Usov, Tech. Phys. 56(5), 662 (2011).CrossRefGoogle Scholar
  13. 13.
    C. Mohr, M. Dubiel, and H. Hofmeister, J. Phys.: Condens. Matter 13, 525 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    Yu. Kaganovskii, E. Mogilko, A. A. Lipovskii, and M. Rosenbluh, J. Phys.: Conf. Ser. 61, 508 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    N. V. Nikonorov and G. T. Petrovskii, Glass Phys. Chem. 25(1), 16 (1999).Google Scholar
  16. 16.
    A. Tervonen, B. R. West, and S. Honkanen, Opt. Eng. 50, 071107 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).CrossRefGoogle Scholar
  18. 18.
    S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, Norwood, Massachusetts, United States, 1992).Google Scholar
  19. 19.
    G. H. Chartier, P. J. R. Laybourn, and A. Girod, Electron. Lett. 22, 925 (1986).CrossRefGoogle Scholar
  20. 20.
    A. Tervonen and S. Honkanen, Opt. Lett. 13, 71 (1988).ADSCrossRefGoogle Scholar
  21. 21.
    C. Tang, Y.-M. Sung, and J. Lee, Appl. Phys. Lett. 100, 201903 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    W. Zheng and T. Kurobori, J. Lumin. 131, 36 (2011).CrossRefGoogle Scholar
  23. 23.
    G. A. Ozin and H. Huber, Inorg. Chem. 17(1), 155 (1978).CrossRefGoogle Scholar
  24. 24.
    B. J. Soller and D. G. Hall, J. Opt. Soc. Am. B 19, 2437 (2002).MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    S. Fedrigo, W. Harbich, and J. Buttet, J. Chem. Phys. 99, 5712 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    C. Felix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, and G. Ertl, Chem. Phys. Lett. 313, 105 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    H. Xu and K. S. Suslick, ACS Nano 4, 3209 (2010).CrossRefGoogle Scholar
  28. 28.
    Optical Technician’s Handbook, Ed. by S. M. Kuznetsov and M. A. Okatov (Mashinostroenie, Leningrad, 1983) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • P. A. Obraztsov
    • 1
  • A. V. Nashchekin
    • 1
  • N. V. Nikonorov
    • 2
  • A. I. Sidorov
    • 2
  • A. V. Panfilova
    • 1
  • P. N. Brunkov
    • 1
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations