Physics of the Solid State

, Volume 55, Issue 6, pp 1198–1206 | Cite as

Properties of BaTiO3/BaZrO3 ferroelectric superlattices with competing instabilities

  • A. I. Lebedev


Properties of (BaTiO3)1/(BaZrO3) n ferroelectric superlattices (SLs) with n = 1−7 grown in the [001] direction are calculated from first principles within the density functional theory. It is revealed that the quasi-two-dimensional ferroelectricity occurs in these SLs in the barium titanate layers with a thickness of one unit cell; the polarization is oriented in the layer plane and weakly interacts with the polarization in neighboring layers. The ferroelectric ordering energy and the height of the barrier separating different orientational states of polarization in these SLs are sufficiently large to provide the formation of an array of independent polarized planes at 300 K. The effect of the structural instability on the properties of SLs is considered. It is shown that the ground state is a result of simultaneous condensation of the Γ15 polar phonon and phonons at the M point (for SLs with even period) or at the A point (for SLs with odd period); it is a polar structure with out-of-phase rotations of the octahedra in neighboring layers, in which highly polarized layers are spatially separated from the layers with strong rotations. The competition between the ferroelectric and structural instabilities in biaxially compressed SLs manifests itself in that the switching on of the octahedra rotations leads to an abrupt change of the polarization direction and can cause an improper ferroelectric phase transition to occur. It was shown that the experimentally observed z-component of polarization in the SLs can appear only as a result of the mechanical stress relaxation.


Spontaneous Polarization Phonon Spectrum Structural Instability Phase Rotation Ground State Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. M. Rabe, Curr. Opin. Solid State Mater. Sci. 9, 122 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    P. Ghosez and J. Junquera, in Handbook of Theoretical and Computational Nanotechnology, Ed. by M. Rieth and W. Schommers (American Scientific, Valencia, California, United States, 2006), Vol. 9, p. 623.Google Scholar
  3. 3.
    A. I. Lebedev, Phys. Solid State 52(7), 1448 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    A. I. Lebedev, Phys. Solid State 53(12), 2463 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    A. I. Lebedev, Phys. Status Solidi B 249, 789 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    O. Diéguez, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B: Condens. Matter 72, 144101 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    A. R. Akbarzadeh, I. Kornev, C. Malibert, L. Bellaiche, and J. M. Kiat, Phys. Rev. B: Condens. Matter 72, 205104 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    J. W. Bennett, I. Grinberg, and A. M. Rappe, Phys. Rev. B: Condens. Matter 73, 180102(R) (2006).ADSCrossRefGoogle Scholar
  9. 9.
    A. Bili and J. D. Gale, Phys. Rev. B: Condens. Matter 79, 174107 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    T. Tsurumi, T. Ichikawa, T. Harigai, H. Kakemoto, and S. Wada, J. Appl. Phys. 91, 2284 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    T. Harigai, S.-M. Nam, H. Kakemoto, S. Wada, K. Saito, and T. Tsurumi, Thin Solid Films 509, 13 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    T. Harigai and T. Tsurumi, Ferroelectrics 346, 56 (2007).CrossRefGoogle Scholar
  13. 13.
    P. R. Choudhury and S. B. Krupanidhi, Appl. Phys. Lett. 92, 102903 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    P. R. Choudhury and S. B. Krupanidhi, J. Appl. Phys. 104, 114105 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    M. E. Marssi, Y. Gagou, J. Belhadi, F. D. Guerville, Y. I. Yuzyuk, and I. P. Raevski, J. Appl. Phys. 108, 084104 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, and J. W. Zwanziger, Comput. Phys. Commun. 180, 2582 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    Opium-Pseudopotential Generation Project. URL
  18. 18.
    A. I. Lebedev, Phys. Solid State 51(2), 362 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    R. Yu, H. Krakauer, Phys. Rev. Lett. 74, 4067 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    E. Bousquet, J. Junquera, and P. Ghosez, Phys. Rev. B: Condens. Matter 82, 045426 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    W. Zhong and D. Vanderbilt, Phys. Rev. Lett. 74, 2587 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    D. Vanderbilt and W. Zhong, Ferroelectrics 206–207, 181 (1998).CrossRefGoogle Scholar
  23. 23.
    F. De Guerville, M. El Marssi, I. P. Raevski, M. G. Karkut, and Y. I. Yuzyuk, Phys. Rev. B: Condens. Matter 74, 064107 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations