Advertisement

Physics of the Solid State

, Volume 55, Issue 6, pp 1294–1303 | Cite as

XANES investigations of interatomic interactions in multilayered nanostructures (Co45Fe45Zr10/a-Si)40 and (Co45Fe45Zr10/SiO2)32

  • E. P. DomashevskayaEmail author
  • A. V. Chernyshev
  • S. Yu. Turishchev
  • Yu. E. Kalinin
  • A. V. Sitnikov
  • D. E. Marchenko
Surface Physics and Thin Films

Abstract

The electronic structure and phase composition of amorphous multilayered nanostructures (Co45Fe45Zr10/a-Si)40 and (Co45Fe45Zr10/SiO2)32 have been investigated by means of the X-ray absorption near-edge structure (XANES) technique, which is the most sensitive and useful in investigation of the chemical environment of elements in multicomponent nanostructures. The fact of interatomic interactions leading to the formation of composite “nanoferrite”-like FeO · Fe2O3 · ZrO2(CoO) was established. Also it was shown that in the mentioned nanoferrite there is an exchange interaction which involves not only two- and three-charged ions of iron (Fe2+ and Fe3+) but also ions like Zr4+ and, partially, Co2+. The transformation of the thin structure of L 2,3-ranges for the iron component of multilayered nanostructures in XANES spectra reflects on the change of the ratio of di- and trivalent ions in iron oxides as a part of the composite “nanoferrite.”

Keywords

Kalinin Reference Spectrum Interatomic Interaction Metallic Layer Metallic Cobalt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. V. Stognei, Doctoral Dissertation (Voronezh State Technical University, Voronezh, 2004).Google Scholar
  2. 2.
    O. V. Stognei, Yu. E. Kalinin, A. V. Sitnikov, I. V. Zolotukhin, and A. V. Slyusarev, Phys. Met. Metallogr. 91(1), 21 (2001).Google Scholar
  3. 3.
    Yu. E. Kalinin, S. B. Kushchev, P. V. Neretin, A. V. Sitnikov, and O. V. Stognei, Russ. J. Appl. Chem. 73(3), 464 (2000).Google Scholar
  4. 4.
    A. B. Pakhomov and X. Yan, Solid State Commun. 99, 139 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    B. A. Aronzon, D. Yu. Kovalev, A. N. Lagar’kov, E. Z. Meilikhov, V. V. Ryl’kov, M. A. Sedova, N. Negre, M. Goiran, and J. Leotin, JETP Lett. 70(2), 90 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Bykov, E. A. Gan’shina, A. B. Granovsky, V. S. Gushchin, A. A. Kozlov, T. Masumoto, and S. Ohnuma, Phys. Solid State 47(2), 281 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    N. E. Kazantseva, A. T. Ponomarenko, V. G. Shevchenko, I. A. Chmutin, Yu. E. Kalinin, and A. V. Sitnikov, Fiz. Khimi. Obrab. Mater., No. 1, 5 (2002).Google Scholar
  8. 8.
    E. P. Domashevskaya, S. A. Storozhilov, S. Yu. Turishchev, V. M. Kashkarov, V. A. Terekhov, O. V. Stognei, Yu. E. Kalinin, A. V. Sitnikov, and S. L. Molodtsov, Phys. Solid State 50(1), 139 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    E. P. Domashevskaya, S. A. Storozhilov, S. Yu. Turishchev, V. M. Kashkarov, V. A. Terekhov, O. V. Stognei, Yu. E. Kalinin, A. V. Sitnikov, and S. L. Molodtsov, Bull. Russ. Acad. Sci.: Phys. 72(4), 448 (2008).CrossRefGoogle Scholar
  10. 10.
    E. P. Domashevskaya, S. A. Storozhilov, S. Yu. Turishchev, V. M. Kashkarov, V. A. Terekhov, O. V. Stognej, Yu. E. Kalinin, and S. L. Molodtsov, J. Electron Spectrosc. Relat. Phenom. 156–158, 180 (2007).CrossRefGoogle Scholar
  11. 11.
    B. A. Aronzon, A. B. Granovskii, A. B. Davydov, M. E. Dokukin, Yu. E. Kalinin, S. N. Nikolaev, V. V. Ryl’kov, A. V. Sitnikov, and V. V. Tugushev, JETP 103(1), 110 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    O. V. Stognei, Yu. E. Kalinin, A. V. Sitnikov, I. V. Zolotukhin, and A. V. Slyusarev, Phys. Met. Metallogr. 91(1), 21 (2001).Google Scholar
  13. 13.
    T. M. Zimkina and V. A. Fomichev, Ultrasoft X-Ray Spectroscopy (Leningrad State University, Leningrad, 1971) [in Russian].Google Scholar
  14. 14.
    C. Colliex, T. Maunobi, and C. Ortiz, Phys. Rev. B: Condens. Matter 44, 11402 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    K. Kupper, PhD Thesis (Department of Physics Osnabruck University, Osnabruck, Germany, 2005).Google Scholar
  16. 16.
    S. A. Chambers, Surf. Sci. Rep. 39, 105 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    P. L. Hansen, R. Brydson, and D. W. McComb, Microsc., Microanal., Microstruct. 3, 213 (1992).CrossRefGoogle Scholar
  18. 18.
    V. A. Terekhov, E. I. Terukov, I. N. Trapeznikov, V. M. Kashkarov, O. V. Kurilo, S. Yu. Turishchev, A. B. Golodenko, and E. P. Domashevskaya, Semiconductors 39(7), 830 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    T. C. Rojas, J. C. Sanchez-Lopez, M. J. Sayagnes, E. P. Reddy, A. Coballero, and A. Fernandez, J. Mater. Chem. 9, 1011 (1999).CrossRefGoogle Scholar
  20. 20.
    C. I. Pearce, D. J. Vaughan, G. van der Laan, R. A. D. Pattrick, and C. M. B. Henderson, Am. Mineral. 91, 880 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. P. Domashevskaya
    • 1
    Email author
  • A. V. Chernyshev
    • 1
  • S. Yu. Turishchev
    • 1
  • Yu. E. Kalinin
    • 2
  • A. V. Sitnikov
    • 2
  • D. E. Marchenko
    • 3
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Voronezh State Technical UniversityVoronezhRussia
  3. 3.Helmholtz-Zentrum Berlin für Materialien und EnergieElektronenspeicherring BESSY IIBerlinGermany

Personalised recommendations