Advertisement

Physics of the Solid State

, Volume 55, Issue 5, pp 1063–1069 | Cite as

Temperature-induced phase transition in quartz nanocrystals dispersed in pseudotachylite

  • V. I. VettegrenEmail author
  • R. I. Mamalimov
  • G. A. Sobolev
  • S. M. Kireenkova
  • Yu. A. Morozov
  • A. I. Smul’skaya
Phase Transitions

Abstract

The size and concentration of α-quartz nanocrystals dispersed in samples of pseudotachylite and the internal stresses in these nanocrystals have been determined using infrared spectroscopy in the temperature range 300–800 K. Pseudotachylite is a product of intense crushing of granite that undergoes in the Earth’s crust faults. It has been found that the size of the nanocrystals is ∼20 nm and does not depend on temperature. As the temperature increases, their concentration decreases monotonically and tends to zero at ∼650 K. This process is paralleled by a growth of the concentration of β-quartz nanocrystals. The α-quartz nanocrystal concentration regains its initial level with decreasing temperature. Thus, the α → β phase transition in quartz nanocrystals in pseudotachylite starts at temperatures lower by ∼500 K than that in the bulk of the macrocrystal (846 K), and is stretched by ∼350 K. At room temperature, the unit cell of nanocrystals is compressed by surface tension forces. These forces retard the α → β phase transition. The thermal expansion coefficient of nanocrystals is larger than that of macrocrystals, which entails a decrease of compression and a monotonic decrease of the concentration of α-quartz nanocrystals with increasing temperature.

Keywords

Phase Transition Thermal Expansion Coefficient Phonon Wave Vector Mountain Rock Temperature Induce Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Sobolev, V. I. Vettegren, S. M. Kireenkova, V. B. Kulik, Yu. A. Morozov, A. I. Smul’skaya, V. A. Pikulin, Izv., Phys. Solid Earth 43(6), 447 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    G. A. Sobolev, S. M. Kireenkova, Yu. A. Morozov, A. I. Smul’skaya, V. A. Tsel’movich, V. I. Vettegren, and V. B. Kulik, Izv., Phys. Solid Earth 45(9), 731 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    G. A. Sobolev, Yu. S. Genshaft, S. M. Kireenkova, Yu. A. Morozov, A. I. Smul’skaya, V. I. Vettegren’, and V. B. Kulik, Izv., Phys. Solid Earth 47(6), 465 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    V. B. Kulik, G. A. Sobolev, V. I. Vettegren, and S. M. Kireenkova, Izv., Phys. Solid Earth 47(10), 873 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    G. A. Sobolev, S. M. Kireenkova, Yu. A. Morozov, A. I. Smul’skaya, V. I. Vettegren, V. B. Kulik, R. I. Mamalimov, Izv., Phys. Solid Earth 48(9–10), 684 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    V. I. Vettegren, R. I. Mamalimov, G. A. Sobolev, S. M. Kireenkova, Yu. A. Morozov, and A. I. Smul’skaya, Phys. Solid State 53(12), 2495 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1964).Google Scholar
  9. 9.
    J. Hlavay, K. Jonas, S. Elek, and J. Inczedy, Clays Clay Miner. 26, 139 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    R. Ravisankar, G. Senthilkumar, and S. Kiruba, Indian J. Sci. Technol. 3, 774 (2010).Google Scholar
  11. 11.
    S. W. Kieffer, Rev. Geophys. Space Phys. 17, 20 (1979).ADSCrossRefGoogle Scholar
  12. 12.
    W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324 (1961).ADSCrossRefGoogle Scholar
  13. 13.
    J. Etchepare, M. Merian, and P. Kaplan, J. Chem. Phys. 60, 1873 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    M. Ocafia, V. Fornes, J. V. Garcia-Ramos, and C. J. Serna, Chem. Miner. 14, 527 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    H. Shen and F. H. Pollak, Appl. Phys. Lett. 45, 692 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    I. P. Ipatova, A. A. Maradudin, and R. F. Wallis, Phys. Rev. 155, 882 (1967).ADSCrossRefGoogle Scholar
  18. 18.
    O. Madelung, Festkörpertheorie (Springer-Verlag, Berlin, 1972).Google Scholar
  19. 19.
    F. Gervais and B. Piriou, Phys. Rev. B: Solid State 11, 3944 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    G. Leibfried, in Handbuch der Physik (Springer-Verlag, Berlin, 1955), Vol. VII, Part 1, p. 104.Google Scholar
  21. 21.
    B. M. Agranovich, Sov. Phys.—Usp. 18(2), 99 (1975).ADSCrossRefGoogle Scholar
  22. 22.
    V. M. Dubovik and E. P. Fetisov, Tech. Phys. 52(9), 1101 (2007).CrossRefGoogle Scholar
  23. 23.
    K. de Boer, A. P. J. Jansen, R. A. van Santen, J. W. Watson, and S. C. Parker, Phys. Rev. B: Condens. Matter 54, 826 (1996).ADSCrossRefGoogle Scholar
  24. 24.
    C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev. 105, 1025 (2005).CrossRefGoogle Scholar
  25. 25.
    V. A. Petrov, A. Ya. Bashkarev, and V. I. Vettegren’, Physical Principles of Predicting the Working Life of Structural Materials (Politekhnika, St. Petersburg, 1993) [in Russian].Google Scholar
  26. 26.
    V. I. Vettegren’ and V. B. Kulik, Polym. Sci., Ser. A 51(8), 849 (2009).CrossRefGoogle Scholar
  27. 27.
    G. Ouyang, X. L. Li, X. Tan, and G. W. Yang, Appl. Phys. Lett. 89, 031904 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    R. C. Cammarata and K. Sieradzki, Annu. Rev. Mater. Sci. 24, 215 (1994).ADSCrossRefGoogle Scholar
  29. 29.
    L. Liang, H. Ma, and Y. Wei, J. Nanomater. 2011, ID 670857 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. I. Vettegren
    • 1
    Email author
  • R. I. Mamalimov
    • 1
  • G. A. Sobolev
    • 2
  • S. M. Kireenkova
    • 2
  • Yu. A. Morozov
    • 2
  • A. I. Smul’skaya
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia

Personalised recommendations