Advertisement

Physics of the Solid State

, Volume 55, Issue 5, pp 952–959 | Cite as

Investigation of the influence of nonstoichiometry and doping with carbon and nitrogen on the electronic spectrum of rutile by the coherent potential method

  • M. A. KorotinEmail author
  • V. M. Zainullina
Semiconductors

Abstract

The electronic spectra and magnetic properties of rutile (TiO2), nonstoichiometric rutile (TiO2 − δ), and stoichiometric and nonstoichiometric rutiles doped with carbon or nitrogen (TiO2 − y − δC y and TiO2 − y − δN y , y(δ) = 0, 0.03, 0.06) have been calculated using the coherent potential method. The used method of investigation has made it possible for the first time to calculate the disordered arrangement of impurity atoms and vacancies in the oxygen sublattice with their arbitrary concentration. The changes in the electronic spectrum and magnetic properties with variations in the concentration of dopants have been investigated. The possible photocatalytic activity of considered compositions has been analyzed.

Keywords

Rutile Photocatalytic Activity Oxygen Vacancy Electronic Spectrum Wannier Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Soven, Phys. Rev. 156, 809 (1967).CrossRefADSGoogle Scholar
  2. 2.
    M. A. Korotin, N. A. Skorikov, V. M. Zainullina, E. Z. Kurmaev, A. V. Lukoyanov, and V. I. Anisimov, JETP Lett. 94(11), 806 (2011).CrossRefADSGoogle Scholar
  3. 3.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science (Washington) 293, 269 (2001).CrossRefGoogle Scholar
  4. 4.
    Sh. U. M. Khan, M. Al-Shahry, and W. B. Ingler, Jr., Science (Washington) 297, 2243 (2002).CrossRefADSGoogle Scholar
  5. 5.
    Y. Huang, W. Ho, S. Lee, L. Zhang, G. Li, and J. C. Yu, Langmuir 24, 3510 (2008).CrossRefGoogle Scholar
  6. 6.
    X. Yang, C. Cao, K. Hohn, L. Erickson, R. Maghirang, D. Hamal, and K. Klabunde, J. Catal. 252, 296 (2007).CrossRefGoogle Scholar
  7. 7.
    M. Batzill, E. H. Morales, and U. Diebold, Phys. Rev. Lett. 96, 026103 (2006).CrossRefADSGoogle Scholar
  8. 8.
    S. Livraghi, A. M. Czoska, M. C. Paganini, and E. Giamello, J. Solid State Chem. 182, 160 (2009).CrossRefADSGoogle Scholar
  9. 9.
    V. N. Krasil’nikov, A. P. Shtin, O. I. Gyrdasova, E. V. Polyakov, L. Yu. Buldakova, M. Yu. Yanchenko, V. M. Zainullina, and V. P. Zhukov, Russ. J. Inorg. Chem. 55(8), 1184 (2010).CrossRefGoogle Scholar
  10. 10.
    N. H. Hong, J. Sakai, N. Poirot, and V. Brizé, Phys. Rev. B: Condens. Matter 73, 132404 (2006).CrossRefADSGoogle Scholar
  11. 11.
    H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett. 99, 127201 (2007).CrossRefADSGoogle Scholar
  12. 12.
    L. Shen, R. Q. Wu, H. Pan, G. W. Peng, M. Yang, Z. D. Sha, and Y. P. Feng, Phys. Rev. B: Condens. Matter 78, 073306 (2008).CrossRefADSGoogle Scholar
  13. 13.
    X. J. Ye, W. Zhong, M. H. Xu, X. S. Qi, C. T. Au, and Y. W. Du, Phys. Lett. A 373, 3684 (2009).CrossRefADSGoogle Scholar
  14. 14.
    J. Pascual, J. Camassel, and H. Mathieu, Phys. Rev. B: Condens. Matter 18, 5606 (1978).CrossRefADSGoogle Scholar
  15. 15.
    L. A. Errico, M. Rentería, and M. Weissmann, Phys. Rev. B: Condens. Matter 72, 184425 (2005).CrossRefADSGoogle Scholar
  16. 16.
    E. Cho, S. Han, H.-S. Ahn, and K.-R. Lee, Phys. Rev. B: Condens. Matter 73, 193202 (2006).CrossRefADSGoogle Scholar
  17. 17.
    V. I. Anisimov, M. A. Korotin, I. A. Nekrasov, A. S. Mylnikova, A. V. Lukoyanov, J. L. Wang, and Z. Zeng, J. Phys.: Condens. Matter. 18, 1695 (2006).CrossRefADSGoogle Scholar
  18. 18.
    M. M. Islam, T. Bredow, and A. Gerson, Phys. Rev. B: Condens. Matter 76(4), 045217 (2007).CrossRefADSGoogle Scholar
  19. 19.
    A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Welle, Phys. Rev. B: Condens. Matter 81(8), 085212 (2010).CrossRefADSGoogle Scholar
  20. 20.
    V. M. Zainullina, M. A. Korotin, and V. P. Zhukov, Physica B (Amsterdam) 405, 2110 (2010).ADSGoogle Scholar
  21. 21.
    J. Osorio-Guillén, S. Lany, and A. Zunger, Phys. Rev. Lett. 100, 036601 (2008).CrossRefADSGoogle Scholar
  22. 22.
    C. Di Valentin, G. Pacchioni, and A. Selloni, Phys. Rev. B: Condens. Matter 70, 085116 (2004).CrossRefADSGoogle Scholar
  23. 23.
    Z. Zhao and Q. Liu, J. Phys. D: Appl. Phys. 41, 025105 (2008).CrossRefADSGoogle Scholar
  24. 24.
    L. Mi, P. Xu, H. Shen, and P.-N. Wanga, Appl. Phys. Lett. 90, 171909 (2007).CrossRefADSGoogle Scholar
  25. 25.
    J.-Y. Lee, J. Park, and J.-H. Cho, Appl. Phys. Lett. 87, 011904 (2005).CrossRefADSGoogle Scholar
  26. 26.
    M. Long, W. Cai, Z. Wang, and G. Liu, Chem. Phys. Lett. 420, 71 (2006).CrossRefADSGoogle Scholar
  27. 27.
    J. G. Tao, L. X. Guan, J. S. Pan, C. H. A. Huan, L. Wang, J. L. Kuo, Z. Zhang, J. W. Chai, and S. J. Wang, Appl. Phys. Lett. 95, 062505 (2009).CrossRefADSGoogle Scholar
  28. 28.
    Y. Bai and Q. Chen, Solid State Commun. 147, 169 (2008).CrossRefADSGoogle Scholar
  29. 29.
    K. Yang, Y. Dai, B. Huang, and M.-H. Whangbo, Chem. Phys. Lett. 481, 99 (2009).CrossRefADSGoogle Scholar
  30. 30.
    K. Yang, Y. Dai, B. Huang, and M.-H. Whangbo, J. Phys. Chem. C 113, 2624 (2009).CrossRefGoogle Scholar
  31. 31.
    C. Di Valentin, G. Pacchioni, and A. Selloni, Chem. Mater. 17, 6656 (2005).CrossRefGoogle Scholar
  32. 32.
    H. Wang and J. Lewis, J. Phys.: Condens. Matter 17, L209 (2005).CrossRefADSGoogle Scholar
  33. 33.
    V. M. Zainullina, V. P. Zhukov, V. N. Krasil’nikov, M. Yu. Yanchenko, L. Yu. Buldakova, and E. V. Polyakov, Phys. Solid State 52(2), 271 (2010).CrossRefADSGoogle Scholar
  34. 34.
    V. P. Zhukov, V. M. Zainullina, and E. V. Chulkov, Int. J. Mod. Phys. B 31, 6049 (2010).CrossRefADSGoogle Scholar
  35. 35.
    V. M. Zainullina, V. P. Zhukov, M. A. Korotin, and E. V. Polyakov, Phys. Solid State 53(7), 1353 (2011).CrossRefADSGoogle Scholar
  36. 36.
    Q. K. Li, B. Wang, Y. Zheng, Q. Wang, and H. Wang, Phys. Status Solidi RRL 1, 217 (2007).CrossRefGoogle Scholar
  37. 37.
    V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).CrossRefADSGoogle Scholar
  38. 38.
    Y. Wang and D. J. Doren, Solid State Commun. 136, 142 (2005).CrossRefADSGoogle Scholar
  39. 39.
    H. Tang, H. Berger, P. E. Schmid, F. Levy, and G. Burri, Solid State Commun. 87, 847 (1993).CrossRefADSGoogle Scholar
  40. 40.
    D. Cronemeyer, Phys. Rev. 113, 1222 (1959).CrossRefADSGoogle Scholar
  41. 41.
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).CrossRefADSGoogle Scholar
  42. 42.
    O. K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev. B: Condens. Matter 34, 5253 (1986).CrossRefADSGoogle Scholar
  43. 43.
    S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 55, 3206 (1971).CrossRefADSGoogle Scholar
  44. 44.
    Z. H. Levin and D. C. Allan, Phys. Rev. Lett. 63, 1719 (1989).CrossRefADSGoogle Scholar
  45. 45.
    V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B: Condens. Matter 71(12), 125119 (2005).CrossRefADSGoogle Scholar
  46. 46.
    H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).CrossRefADSGoogle Scholar
  47. 47.
    A. K. Ghosh, F. G. Wakim, and R. R. Addiss, Jr., Phys. Rev. 184, 979 (1969).CrossRefADSGoogle Scholar
  48. 48.
    V. E. Henrich and R. L. Kurtz, Phys. Rev. B: Condens. Matter 23, 6280 (1981).CrossRefADSGoogle Scholar
  49. 49.
    S. Sakthive, Angew. Chem. 42, 4908 (2003).CrossRefGoogle Scholar
  50. 50.
    H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys. Chem. B 107, 5483 (2003).CrossRefGoogle Scholar
  51. 51.
    T. Lindgren, J. M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C.-G. Granqvist, and S.-E. Lindquist, J. Phys. Chem. B 107, 5709 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Metal PhysicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Solid State ChemistryUral Branch of the Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations