Advertisement

Physics of the Solid State

, Volume 55, Issue 2, pp 454–460 | Cite as

Heat capacity of Bio-SiC and SiC/Si ecoceramics prepared from white eucalyptus, beech, and sapele tree wood

  • I. A. Smirnov
  • B. I. Smirnov
  • T. S. Orlova
  • D. Wlosewicz
  • A. Hackemer
  • H. Misiorek
  • J. Mucha
  • A. Jezowski
  • J. Ramirez-Rico
  • J. Martinez-Fernandez
Thermal Properties

Abstract

This paper reports on measurement of the heat capacity at constant pressure C p of silicon bio-carbide prepared within the 5–300 K temperature interval from beech tree wood (bio-SiC(BE)), and within 80–300 K, from tree wood of sapele (bio-SiC(SA)), as well as SiC/Si ecoceramics of beech, sapele, and white eucalyptus wood. It has been shown that in bio-SiC(BE) the measured heat capacity contains a significant contribution of surface heat capacity, whose magnitude decreases with increasing temperature. Of the ecoceramics, only SiC/Si(SA) characterized by a high enough porosity has revealed a small contribution to the heat capacity coming from its surface component. The experimental results obtained are discussed.

Keywords

Heat Capacity Tree Wood Automatic Adiabatic Calorimeter Surface Phonon Mode Surface Heat Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Sieber, C. Hoffman, A. Kaindl, and P. Greil, Adv. Eng. Mater. 2, 105 (2000).CrossRefGoogle Scholar
  2. 2.
    H. Sieber, Mater. Sci. Eng., A 412, 43 (2005).CrossRefGoogle Scholar
  3. 3.
    A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzales, C. Dominguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1, 56 (2004).CrossRefGoogle Scholar
  4. 4.
    C. Zollifrank and H. Siber, J. Eur. Ceram. Soc. 24, 495 (2004).CrossRefGoogle Scholar
  5. 5.
    C. E. Byrne and D. C. Nagle, US Patent No. 6051096 (1996); C. E. Byrne and D. C. Nagle, US Patent No. 6 124 028 (1998).Google Scholar
  6. 6.
    P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998); P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1975 (1998).CrossRefGoogle Scholar
  7. 7.
    M. Singh, Ceram. Sci. Eng. Proc. 21, 39 (2000).CrossRefGoogle Scholar
  8. 8.
    C. Zollifrank and H. Sieber, J. Am. Ceram. Soc. 88, 51 (2005).CrossRefGoogle Scholar
  9. 9.
    L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, J. Mucha, A. Jezowski, R. Cabezas-Rodriguez, and J. Ramirez-Rico, Phys. Solid State 54(8), 1732 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, J. Mucha, A. Jezowski, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 54(10), 2132 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    I. A. Smirnov, B. I. Smirnov, T. S. Orlova, Cz. Sulkovski, H. Misiorek, J. Mucha, A. Jezowski, J. RamiresRico, and J. Martinez-Fernandez, Phys. Solid State 55 (2013) (in press).Google Scholar
  12. 12.
    I. A. Smirnov, B. I. Smirnov, A. I. Krivchikov, H. Misiorek, A. Jezowski, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and R. Sepulveda, Phys. Solid State 49(10), 1835 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    I. A. Smirnov, B. I. Smirnov, H. Misiorek, A. Jezowski, A. R. de Arellano-Lopez, J. Martinez-Fernandez, F. M. Varela-Feria, A. I. Krivchikov, G. A. Zviagina, and K. R. Zhekov, Phys. Solid State 49(10), 1839 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    K. E. Pappacena, S. P. Gentry, T. E. Wilkes, M. T. Johnson, S. Xie, A. David, and K. T. Faber, J. Eur. Ceram. Soc. 29, 3069 (2009).CrossRefGoogle Scholar
  15. 15.
    F. M. Varela-Feria, PhD Thesis (Universidad de Sevilla, Sevilla, Spain, 2004).Google Scholar
  16. 16.
    V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428, 225 (2006).CrossRefGoogle Scholar
  17. 17.
    K. E. Pappacena, K. T. Faber, H. Wang, and W. D. Porter, J. Am. Ceram. Soc. 90, 2855 (2007).CrossRefGoogle Scholar
  18. 18.
    D. Wlosewicz, T. Plackowski, and K. Rogalski, Cryogenics 32, 265 (1992).CrossRefGoogle Scholar
  19. 19.
    A. I. Krivchikov, B. Ya. Gorodilov, and A. Czopnik, in Proceedings of the International Seminar on Low Temperature Thermometry and Dynamic Temperature Measurement, Wroclaw, Poland, September 23–25, 1997, p. V7.Google Scholar
  20. 20.
    V. I. Koshchenko, A. F. Demidenko, N. K. Prokof’eva, V. E. Yachmenov, and A. F. Radchenko, Izv. Akad. Nauk SSSR, Neorg. Mater. 15, 1208 (1974).Google Scholar
  21. 21.
    A. Zywietz, K. Karch, and F. Bechstedt, Phys. Rev. B: Condens. Matter 54, 1791 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    R. Rössler, Phys. Status Solidi B 245, 1133 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997), p. 197.Google Scholar
  24. 24.
    Silicon Carbide: Proceedings of the International Conference on Silicon Carbide, University Park, Pensilvania, October 20–23, 1968, Ed. by H. Henisch and R. Roy (Pergamon, New York, 1969; Mir, Moscow, 1972).Google Scholar
  25. 25.
    R. Syratton, Philos. Mag. 44, 519 (1953).Google Scholar
  26. 26.
    M. Dupuis, R. Mazo, and L. Onsager, J. Chem. Phys. 33, 1452 (1960).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    A. A. Maradudin and R. F. Wallis, Phys. Rev. 148, 945 (1966).ADSCrossRefGoogle Scholar
  28. 28.
    J. J. Burton, J. Chem. Phys. 52, 345 (1970).ADSCrossRefGoogle Scholar
  29. 29.
    V. Navotny and P. P. M. Meineke, Phys. Rev. B: Solid State 8, 4186 (1973).ADSCrossRefGoogle Scholar
  30. 30.
    V. N. Bogomolov, L. S. Parfen’eva, I. A. Smirnov, H. Misiorek, A. Jezowski, A. I. Krivchikov, and B. I. Verkin, Phys. Solid State 43(1), 190 (2001).Google Scholar
  31. 31.
    T. Sleator, A. Bernasconi, D. Possalt, J. K. Kjems, and H. R. Ott, Phys. Rev. Lett. 66, 1070 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    I. L. Morokhov, V. I. Petinov, L. I. Trusov, and V. F. Petrunin, Sov. Phys.-Usp. 24(4), 295 (1981).Google Scholar
  33. 33.
    J. H. Barkman, R. L. Anderson, and T. E. Bracket, J. Chem. Phys. 42, 1112 (1965).ADSCrossRefGoogle Scholar
  34. 34.
    G. H. Comsa, D. Heitkamp, and H. Rade, Solidi State Commun. 24, 547 (1977).ADSCrossRefGoogle Scholar
  35. 35.
    J. Kovacik, S. Emmer, and J. Bielek, Kovove Mater. 42, 365 (2004).Google Scholar
  36. 36.
    M. Presas, J. Y. Pastor, J. Llorca, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and R. Sepulveda, Scr. Mater. 53, 1175 (2005).CrossRefGoogle Scholar
  37. 37.
    Physico-Chemical Properties of Semiconductor Substances: A Handbook (Nauka, Moscow, 1979) [in Russian].Google Scholar
  38. 38.
    L. A. Novitskii and I. G. Kozhevnikov, Thermophysical Properties of Materials at Low Temperatures: A Handbook (Mashinostroenie, Moscow, 1975) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. A. Smirnov
    • 1
  • B. I. Smirnov
    • 1
  • T. S. Orlova
    • 1
  • D. Wlosewicz
    • 2
  • A. Hackemer
    • 2
  • H. Misiorek
    • 2
  • J. Mucha
    • 2
  • A. Jezowski
    • 2
  • J. Ramirez-Rico
    • 3
  • J. Martinez-Fernandez
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Trzebiatowski Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWroclawPoland
  3. 3.Departamento de Fisica de la Materia Condensada—Instituto de Ciencia de Materiales de Sevilla (ICMSE)Universidad de SevillaSevillaSpain

Personalised recommendations