Advertisement

Physics of the Solid State

, Volume 55, Issue 2, pp 437–442 | Cite as

Formation and magnetic properties of the silicon-cobalt interface

  • M. V. Gomoyunova
  • G. S. Grebenyuk
  • I. I. Pronin
  • S. M. Solov’ev
  • O. Yu. Vilkov
  • D. V. Vyalykh
Low-Dimensional Systems

Abstract

Formation of the Si/Co interface and its magnetic properties have been studied by high-resolution photoelectron spectroscopy with synchrotron radiation. The experiments have been performed in situ in superhigh vacuum (5 × 10−10 Torr) with coating thicknesses up to 2 nm. It has been found that, in the initial stage of silicon deposition on the surface of polycrystalline cobalt maintained at room temperature, ultrathin layers of the Co3Si, Co2Si, CoSi, and CoSi2 silicides are formed. The three last phases are nonmagnetic, and their formation gives rise to fast decay of magnetic linear dichroism in photoemission of Co 3p electrons. At deposition doses in excess of ∼0.4 nm Si, a film of amorphous silicon grows on the sample surface. It has been established that the Si/Co interphase boundary is stable at temperatures up to ∼250°C and that further heating of the sample brings about escape of amorphous silicon from the sample surface and initiates processes involving silicide formation.

Keywords

Cobalt Amorphous Silicon Interphase Boundary Cobalt Film Silicon Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Quirós, J.I. Martin, L. Zárate, M. Vélez, and J. M. Alameda, Phys. Rev. B: Condens. Matter 71, 024423 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    N. Yaacoub, Ch. Meny, C. Ulhaq-Bouillet, M. Acosta, and P. Panissod, Phys. Rev. B: Condens. Matter 75, 174402 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    S. M. Valvidares, C. Quirós, A. Mirone, J.-M. Tonnerre, S. Stanescu, P. Bencok, Y. Souche, L. Zárate, J. I. Martin, M. Vélez, N. B. Brookes, and J. M. Alameda, Phys. Rev. B: Condens. Matter 78, 064406 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    C. Pirri, J. C. Peruchetti, G. Gewinner, and J. Derrien, Phys. Rev. B: Condens. Matter 29, 3391 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    F. Hellmann and R. T. Tung, Phys. Rev. B: Condens. Matter 37, 10786 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    J. M. Gallego, R. Miranda, S. Molodtsov, C. Laubschat, and G. Kaindl, Surf. Sci. 239, 203 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    H. L. Meyrheim, U. Döbler, and A. Puschmann, Phys. Rev. B: Condens. Matter 44, 5738 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    C. Pirri, S. Hong, M. H. Tuilier, P. Wetzel, G. Gewinner, and R. Cortes, Phys. Rev. B: Condens. Matter 53, 1368 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    W. S. Cho, J. Y. Kim, N. G. Park, I. W. Lyo, K. Jeong, S. S. Kim, D. S. Choi, C. N. Whang, and K. H. Chae, Surf. Sci. 453, L309 (2000).CrossRefGoogle Scholar
  10. 10.
    M. V. Gomoyunova, I. I. Pronin, N. R. Gall’, S. L. Molodtsov, and D. V. Vyalykh, Phys. Solid State 45(8), 1596 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    M. V. Gomounova, I. I. Pronin, N. R. Gall, D. N. Vyalikh, and S. L. Molodtsov, Surf. Sci. 578, 174 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    J. S. Pan, R. S. Liu, Z. Zhang, S. W. Poon, W. J. Ong, and E. S. Tok, Surf. Sci. 600, 1308 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    S. P. Dash, D. Goll, and H. D. Carstanjen, Appl. Phys. Lett. 90, 132109 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    I. I. Pronin, M. V. Gomoyunova, S. M. Solov’ev, O. Yu. Vilkov, and D. V. Vyalykh, Phys. Solid State 53(3), 616 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    M. V. Gomoyunova, G. S. Grebenyuk, and I. I. Pronin, Tech. Phys. 56(6), 865 (2011).CrossRefGoogle Scholar
  16. 16.
    M. V. Gomoyunova and I. I. Pronin, Tech. Phys. 49(10), 1249 (2004).CrossRefGoogle Scholar
  17. 17.
    Ch. Roth, F. U. Hillebrecht, H. B. Rose, and E. Kisker, Phys. Rev. Lett. 70, 3479 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    F. Sirotti and G. Rossi, Phys. Rev. B: Condens. Matter 49, 15682 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    N. Janke-Gilman, M. Hochstasser, and R. F. Willis, Phys. Rev. B: Condens. Matter 70, 184439 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    M. V. Gomoyunova, G. S. Grebenyuk, and I. I. Pronin, Tech. Phys. Lett. 37(12), 1124 (2011).CrossRefGoogle Scholar
  21. 21.
    R. A. Riedel, M. Turowski, G. Margoritonto, P. Perfetti, and C. Quaresima, J. Appl. Phys. 55, 3195 (1984).ADSCrossRefGoogle Scholar
  22. 22.
    M. V. Gomoyunova, I. I. Pronin, D. E. Malygin, N. R. Gall, D. V. Vyalikh, and S. L. Molodtsov, Surf. Sci. 600, 2449 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    B. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York, 1958; Metallurgiya, Moscow, 1965), Vol. 1.Google Scholar
  24. 24.
    F. Sirotti and G. Rossi, Phys. Rev. B: Condens. Matter 49, 15682 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    J. Bansmann, I. Lu, K.H. Meiwes-Broer, T. Schlatholter, and J. Braun, Phys. Rev. B: Condens. Matter 60, 13860 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. V. Gomoyunova
    • 1
  • G. S. Grebenyuk
    • 1
  • I. I. Pronin
    • 1
  • S. M. Solov’ev
    • 1
  • O. Yu. Vilkov
    • 2
  • D. V. Vyalykh
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institut für FestkörperphysikTechnische Universität DresdenDresdenGermany

Personalised recommendations