Advertisement

Physics of the Solid State

, Volume 55, Issue 1, pp 26–30 | Cite as

Electronic structure of rutile simultaneously doped with carbon and nitrogen atoms in the coherent potential approximation

  • V. M. ZainullinaEmail author
  • M. A. Korotin
Semiconductors

Abstract

The coherent potential method has been used for calculating the electronic structure and magnetic properties of rutile with a disordered arrangement of impurity carbon and nitrogen atoms in the oxygen sublattice: TiO2 − xy C x N y , x(y) = 0, 0.03, and 0.06. The tendencies to changes in the magnetic moment and photocatalytic activity with variations in the carbon-nitrogen composition of codoped rutile have been analyzed using the obtained data.

Keywords

Rutile Photocatalytic Activity Electronic Spectrum Impurity State Impurity Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science (Washington) 293, 269 (2001).CrossRefGoogle Scholar
  2. 2.
    Sh. U. M. Khan, M. Al-Shahry, and W. B. Ingler, Jr., Science (Washington) 297, 2243 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Huang, W. Ho, Sh. Lee, L. Zhang, G. Li, and J. C. Yu, Langmuir 24, 3510 (2008).CrossRefGoogle Scholar
  4. 4.
    X. Yang, Ch. Cao, K. Hohn, L. Erickson, R. Maghirang, D. Hamal, and K. Klabunde, J. Catal. 252, 296 (2007).CrossRefGoogle Scholar
  5. 5.
    M. Batzill, E. H. Morales, and U. Diebold, Phys. Rev. Lett. 96, 026103 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    S. Livraghi, A. M. Czoska, M. C. Paganini, and E. Giamello, J. Solid State Chem. 182, 160 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    V. N. Krasil’nikov, A. P. Shtin, O. I. Gyrdasova, E. V. Polyakov, L. Yu. Buldakova, M. Yu. Yanchenko, V. M. Zainullina, and V. P. Zhukov, Russ. J. Inorg. Chem. 55(8), 1184 (2010).CrossRefGoogle Scholar
  8. 8.
    S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M. S. Tikhov, D. S. Wright, and R. M. Lambert, J. Am. Chem. Soc. 129, 13790 (2007).CrossRefGoogle Scholar
  9. 9.
    G. Wu, J. Wang, Dan F. Thomas, and A. Chen, Langmuir 24, 3503 (2008).CrossRefGoogle Scholar
  10. 10.
    M. F. Smith, K. Setwong, R. Tongpool, D. Onkaw, S. Naphattalung, S. Limpijumnong, and S. Rujirawat, Appl. Phys. Lett. 91, 142107 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    X. J. Ye, W. Zhong, M. H. Xu, X. S. Qi, C. T. Au, and Y. W. Du, Phys. Lett. A 373, 3684 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    C. Di Valentin, G. Pacchioni, and A. Selloni, Phys. Rev. B: Condens. Matter 70, 085116 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Zhao and Q. Liu, J. Phys. D: Appl. Phys. 41, 025105 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    L. Mi, P. Xu, H. Shen, P.-N. Wang, and W. Shen, Appl. Phys. Lett. 90, 171909 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    J.-Y. Lee, J. Park, and J.-H. Cho, Appl. Phys. Lett. 87, 011904 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    M. Long, W. Cai, Zh. Wang, and G. Liu, Chem. Phys. Lett. 420, 71 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    J. G. Tao, L. X. Guan, J. S. Pan, C. H. A. Huan, L. Wang, J. L. Kuo, Z. Zhang, J. W. Chai, and S. J. Wang, Appl. Phys. Lett. 95, 062505 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Bai and Q. Chen, Solid State Commun. 147, 169 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    K. Yang, Y. Dai, B. Huang, and M.-H. Whangbo, Chem. Phys. Lett. 481, 99 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    M. A. Korotin and V. M. Zainullina, http://michael.korotin.name/unpublished/TiO2.ECN.pdf
  21. 21.
    K. Yang, Y. Dai, B. Huang, and M.-H. Whangbo, J. Phys. Chem. C 113, 2624 (2009).CrossRefGoogle Scholar
  22. 22.
    C. Di Valentin, G. Pacchioni, and A. Selloni, Chem. Mater. 17, 6656 (2005).CrossRefGoogle Scholar
  23. 23.
    H. Wang and J. Lewis, J. Phys.: Condens. Matter 17, L209 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    V. M. Zainullina, V. P. Zhukov, V. N. Krasil’nikov, M. Yu. Yanchenko, L. Yu. Buldakova, and E. V. Polyakov, Phys. Solid State 52(2), 271 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    V. P. Zhukov, V. M. Zainullina, and E. V. Chulkov, Int. J. Mod. Phys. B 24, 6049 (2010).ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    V. M. Zainullina, V. P. Zhukov, M. A. Korotin, and E. V. Polyakov, Phys. Solid State 53(7), 1353 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    R. H. Zhang, Q. Wang, Q. Li, J. Dai, and D. H. Huang, Physica B (Amsterdam) 406, 3417 (2011).ADSGoogle Scholar
  28. 28.
    Q. K. Li, B. Wang, Y. Zheng, Q. Wang, and H. Wang, Phys. Status Solidi RRL 1, 217 (2007).CrossRefGoogle Scholar
  29. 29.
    P. Soven, Phys. Rev. 156, 809 (1967).ADSCrossRefGoogle Scholar
  30. 30.
    M. A. Korotin, N. A. Skorikov, V. M. Zainullina, E. Z. Kurmaev, A. V. Lukoyanov, and V. I. Anisimov, JETP Lett. 94(11), 806 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    O. K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev. B: Condens. Matter 34, 5253 (1986).ADSCrossRefGoogle Scholar
  32. 32.
    S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 55, 3206 (1971).ADSCrossRefGoogle Scholar
  33. 33.
    Z. H. Levine and D. C. Allan, Phys. Rev. Lett. 63, 1719 (1989).ADSCrossRefGoogle Scholar
  34. 34.
    J. Pascual, J. Camassel, and H. Mathieu, Phys. Rev. B: Solid State 18, 5606 (1978).ADSCrossRefGoogle Scholar
  35. 35.
    V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B: Condens. Matter 71, 125119 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).ADSCrossRefGoogle Scholar
  37. 37.
    S. Sakthivel and H. Kisch, Angew. Chem., Int. Ed. 42, 4908 (2003).CrossRefGoogle Scholar
  38. 38.
    H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys. Chem. B 107, 5483 (2003).CrossRefGoogle Scholar
  39. 39.
    T. Lindgren, J. M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C.-G. Granqvist, S.-E. Lindquist, J. Phys. Chem. B 107, 5709 (2003).CrossRefGoogle Scholar
  40. 40.
    D. Chen, Zh. Jiang, J. Geng, Q. Wang, and D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Solid State ChemistryUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Metal PhysicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations