Advertisement

Physics of the Solid State

, Volume 55, Issue 1, pp 54–59 | Cite as

Thermopower of Bio-SiC and SiC/Si ecoceramics prepared from sapele tree wood

  • I. A. Smirnov
  • B. I. Smirnov
  • T. S. Orlova
  • Cz. Sulkovski
  • H. Misiorek
  • J. Muha
  • A. Jezowski
  • J. Ramirez-Rico
  • J. Martinez-Fernandez
Dielectrics

Abstract

The thermopower coefficients of bio-SiC and SiC/Si ecoceramics prepared from sapele tree wood have been measured in the temperature interval 5–300 K. The measurements have been performed both along and perpendicular to empty (bio-SiC), as well as empty and partially silicon-filled (SiC/Si) channels in the samples. In bio-SiC, a contribution to thermopower associated with electron drag by phonons has been shown to exist within the temperature interval 5–200 (250) K. No such effect is realized in SiC/Si. This is assumed to derive from the presence in this material of heavily doped silicon embedded in SiC channels and the dominant part it plays in the behavior of the thermopower of this ceramics. The results obtained for the thermopower are compared with the available data for bio-SiC prepared from white eucalyptus tree wood and heavily doped bismuth.

Keywords

Temperature Interval Tree Wood Drag Effect Bell Shaped Curve Phonon Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Sieber, C. Hoffman, A. Kaindl, and P. Greil, Adv. Eng. Mater. 2, 105 (2000).CrossRefGoogle Scholar
  2. 2.
    H. Siber, Mater. Sci. Eng., A 412, 43 (2005).CrossRefGoogle Scholar
  3. 3.
    A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1, 56 (2004).CrossRefGoogle Scholar
  4. 4.
    C. Zollifrank and H. Sieber, J. Eur. Ceram. Soc. 24, 495 (2004).CrossRefGoogle Scholar
  5. 5.
    T. E. Wilkes, S. P. Stock, F. De Carlo, X. Xiao, and K. T. Faber, Philos. Mag. 89, 1373 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, J. Mucha, A. Jezowski, R. Cabezas-Rodriguez, and J. Ramirez-Rico, Phys. Solid State 54(8), 1732 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, and I. A. Smirnov, H. Misiorek, J. Mucha, A. Jezowski, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 54(10), 2132 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    C. E. Byrne and D. C. Nagle, US Patent No. 6 051 096 (1996); C. E. Byrne and D. C. Nagle, US Patent No. 6 124 028 (1998).Google Scholar
  9. 9.
    P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998); P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1975 (1998).CrossRefGoogle Scholar
  10. 10.
    M. Singh, Ceram. Sci. Eng. Proc. 21, 39 (2000).CrossRefGoogle Scholar
  11. 11.
    C. Zollifrank and H. Sieber, J. Am. Ceram. Soc. 88, 51 (2005).CrossRefGoogle Scholar
  12. 12.
    I. A. Smirnov, B. I. Smirnov, E. N. Mokhov, Cz. Sulkowski, H. Misiorek, A. Jezowski, A.R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 50(8), 1407 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    L. Gurevich, J. Phys. (Moscow) 9, 477 (1945); L. Gurevich, J. Phys. (Moscow) 10, 67 (1946).MathSciNetGoogle Scholar
  14. 14.
    C. Herring, Phys. Rev. 96, 1163 (1954).ADSCrossRefGoogle Scholar
  15. 15.
    H. P. Frederikse, Phys. Rev. 92, 248 (1953).ADSCrossRefGoogle Scholar
  16. 16.
    T. H. Geballe and G. H. Hull, Phys. Rev. 94, 1134 (1954).ADSCrossRefGoogle Scholar
  17. 17.
    V. D. Kagan, N. A. Red’ko, N. A. Radionov, V. N. Pol’shin, and O. V. Zotova, Phys. Solid State 46(8), 1410 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    L. L. Vovchenko, I. V. Dvorkina, and L. Yu. Matsui, Low Temp. Phys. 20(5), 368 (1994).ADSGoogle Scholar
  19. 19.
    V. V. Popov, S. K. Gordeev, A. V. Grechinskaya, and A. M. Danishevskii, Phys. Solid State 44(4), 789 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    G. I. Fen, Usp. Fiz. Nauk 64, 733 (1958).Google Scholar
  21. 21.
    A. T. Burkov, S. V. Novikov, B. I. Smirnov, I. A. Smirnov, Cz. Sulkovski, and A. Jezowski, Phys. Solid State 52 (11), 2333 (2010).Google Scholar
  22. 22.
    W. Shin, M. Ishikawa, M. Nishibori, N. Izu, T. Itoh, and I. Matsubara, Mater. Trans. 50, 1596 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. A. Smirnov
    • 1
  • B. I. Smirnov
    • 1
  • T. S. Orlova
    • 1
  • Cz. Sulkovski
    • 2
  • H. Misiorek
    • 2
  • J. Muha
    • 2
  • A. Jezowski
    • 2
  • J. Ramirez-Rico
    • 3
  • J. Martinez-Fernandez
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Trzebiatowski Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWroclawPoland
  3. 3.Departamento de Fisica de la Materia Condensada—Instituto de Ciencia de Materiales de Sevilla (ICMSE)Universidad de SevillaSevillaSpain

Personalised recommendations