Advertisement

Physics of the Solid State

, Volume 54, Issue 10, pp 2132–2141 | Cite as

Electrical resistivity and thermal conductivity of SiC/Si ecoceramics prepared from sapele wood biocarbon

  • L. S. Parfen’eva
  • T. S. Orlova
  • B. I. Smirnov
  • I. A. Smirnov
  • H. Misiorek
  • J. Mucha
  • A. Jezowski
  • A. Gutierrez-Pardo
  • J. Ramirez-Rico
Thermal Properties

Abstract

Samples of β-SiC/Si ecoceramics with a silicon concentration of ∼21 vol % have been prepared using a series of consecutive procedures (carbonization of sapele wood biocarbon, synthesis of high-porosity biocarbon with channel-type pores, infiltration of molten silicon into empty channels of the biocarbon, formation of β-SiC, and retention of residual silicon in channels of β-SiC). The electrical resistivity ρ and thermal conductivity κ of the β-SiC/Si ecoceramic samples have been measured in the temperature range 5–300 K. The values of ρ Si chan (T) and κ Si chan (T) have been determined for silicon Sichan located in β-SiC channels of the synthesized β-SiC/Si ecoceramics. Based on the performed analysis of the obtained results, the concentration of charge carriers (holes) in Sichan has been estimated as p ∼ 1019 cm−3. The factors that can be responsible for such a high value of p have been discussed. The prospects for practical application of β-SiC/Si ecoceramics have been considered.

Keywords

Charge Carrier Electrical Resistivity Effective Porosity Chrysotile Charge Carrier Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Sieber, C. Hoffman, A. Kaindl, and P. Greil, Adv. Eng. Mater. 2, 105 (2000).CrossRefGoogle Scholar
  2. 2.
    H. Siber, Mater. Sci. Eng., A 412, 43 (2005).CrossRefGoogle Scholar
  3. 3.
    C. E. Byrne and D. C. Nagle, US Patent No. 6 051 096 (1996); C. E. Byrne and D. C. Nagle, US Patent No. 6 124 028 (1998).Google Scholar
  4. 4.
    P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998); P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1975 (1998).CrossRefGoogle Scholar
  5. 5.
    M. Singh, Ceram. Sci. Eng. Proc. 21, 39 (2000).CrossRefGoogle Scholar
  6. 6.
    C. Zollifrank and H. Sieber, J. Eur. Ceram. Soc. 24, 495 (2004).CrossRefGoogle Scholar
  7. 7.
    A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, D. Dominguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1, 56 (2004).CrossRefGoogle Scholar
  8. 8.
    C. Zollifrank and H. Sieber, J. Am. Ceram. Soc. 88, 51 (2005).CrossRefGoogle Scholar
  9. 9.
    P. Gonzalez, J. P. Borrajo, J. Serra, S. Liste, S. Chiussl, B. Leon, K. Semmelmann, A. de Carlos, F. M. Varela-Feria, J. Martinez-Fernandez, A. R. de Arellano-Lopez, Key Eng. Mater. 254–256, 1029 (2004).CrossRefGoogle Scholar
  10. 10.
    A. Muñoz, J. Martinez-Fernandez, A. Dominguez Rodriguez, and M. Singh, J. Eur. Ceram. Soc. 18, 65 (1998).CrossRefGoogle Scholar
  11. 11.
    F. M. Varela-Feria, S. Lopez Rombero, J. Martinez-Fernandez, A. Ramirez, A. R. de Arellano-Lopez, and M. Singh, Ceram. Eng. Sci. Proc. 22, 135 (2001).CrossRefGoogle Scholar
  12. 12.
    M. Singh and A. Salem, J. Eur. Ceram. Soc. 22, 2709 (2002).CrossRefGoogle Scholar
  13. 13.
    B. I. Smirnov, Yu. A. Burenkov, B. K. Kardashev, F. M. Varela-Feria, J. Martinez-Fernandez, and A. R. de Arellano-Lopez, Phys. Solid State 45(3), 482 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    B. K. Kardashev, B. I. Smirnov, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Mater. Sci. Eng., A 442, 444 (2006).CrossRefGoogle Scholar
  15. 15.
    T. E. Wilkes, S. P. Stock, F. De Carlo, X. Xiao, and K. T. Faber, Philos. Mag. 89, 1373 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, F. Varela-Feria, J. Martinez-Fernandez, and A. R. de Arellano-Lopez, Phys. Solid State 47(7), 1216 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    A. I. Shelykh, B. I. Smirnov, T. S. Orlova, I. A. Smirnov, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 48(2), 229 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    A. I. Shelykh, B. I. Smirnov, I. A. Smirnov, A. R. de Arel-lano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 48(2), 216 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Mosiorek, J. Mucha, A. Jezowski, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 48(12), 2281 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    L. S. Parfen’eva, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and R. Sepulveda, Phys. Solid State 49(2), 211 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    T. S. Orlova, D. V. Il’in, B. I. Smirnov, I. A. Smirnov, R. Sepulveda, J. Martinez-Fernandez, and A. R. de Arellano-Lopez, Phys. Solid State 49(2), 205 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    I. A. Smirnov, B. I. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, F. M. Varela-Feria, A. I. Krivchikov, G. A. Zviagina, and K. R. Zhekov, Phys. Solid State 49(10), 1839 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    V. V. Popov, T. S. Orlova, J. Ramirez-Rico, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 50(10), 1819 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    T. S. Orlova, B. I. Smirnov, A. R. Arellano-Lopez, J. Martinez-Fernandez, and R. Sepulveda, Phys. Solid State 47(2), 229 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, J. Mucha, A. Jezowski, R. Cabezas-Rodriguez, and J. Ramirez-Rico, Phys. Solid State 54(8), 1732 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    T. E. Wilkes, J. Y. Pastor, J. Llorca, and K. T. Faber, J. Mater. Res. 23, 1732 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    M. Presas, J. Y. Pastor, J. Llorca, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and R. Sepulveda, Scr. Mater. 53, 1175 (2005).CrossRefGoogle Scholar
  28. 28.
    J. Martinez-Fernandez, F. M. Varela-Feria, and M. Singh, Scr. Mater. 43, 813 (2000).CrossRefGoogle Scholar
  29. 29.
    A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl. Phys. 20, 1500 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    E. A. Bel’skaya and A. S. Tarabanov, in Thermophysical Properties of Solids: Collection of Papers (Naukova Dumka, Kiev, 1971), p. 111 [in Russian].Google Scholar
  31. 31.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. S. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).Google Scholar
  32. 32.
    S. S. Shalyt, Electrical Conductivity of Semiconductors (Institute of Semiconductors, Academy of Sciences of the USSR, Leningrad, 1956), Vols. 1–2 [in Russian].Google Scholar
  33. 33.
    E. Ya. Litovskii, Izv. Akad. Nauk SSSR, Neorg. Mater. 16, 559 (1980).Google Scholar
  34. 34.
    Thermal Conductivity of Solids: A Handbook, Ed. by A. S. Okhotin (Energoatomizdat, Moscow, 1984) [in Russian].Google Scholar
  35. 35.
    L. M. Ivanova, R. A. Aleksandrov, and K. D. Demakov, Inorg. Mater. 42(11), 1205 (2006).CrossRefGoogle Scholar
  36. 36.
    G. N. Dul’nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composite Materials (Energiya, Leningrad, 1974) [in Russian].Google Scholar
  37. 37.
    R. C. Pettersen, in The Chemistry of Solid Wood, Ed. by R. M. Rowell (American Chemistry Society, Washington, DC, 1984), Chap. 2, p. 119.Google Scholar
  38. 38.
    A. T. Burkov, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, and A. Jezowski, Phys. Solid State 52(11), 2333 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • L. S. Parfen’eva
    • 1
  • T. S. Orlova
    • 1
  • B. I. Smirnov
    • 1
  • I. A. Smirnov
    • 1
  • H. Misiorek
    • 2
  • J. Mucha
    • 2
  • A. Jezowski
    • 2
  • A. Gutierrez-Pardo
    • 3
  • J. Ramirez-Rico
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Trzebiatowski Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWroclawPoland
  3. 3.Departamento de Fisica de la Materia Condensada—Instituto de Ciencia de Materiales de Sevilla (ICMSE)Universidad de SevillaSevillaSpain

Personalised recommendations