Advertisement

Physics of the Solid State

, Volume 54, Issue 9, pp 1864–1869 | Cite as

Description of the pressure-induced insulator-metal transition in BaCoS2 within the LDA + DMFT approach

  • V. M. ZainullinaEmail author
  • N. A. Skorikov
  • M. A. Korotin
Phase Transitions

Abstract

The pressure-induced insulator-metal transition in paramagnetic sulfide BaCoS2 at a temperature of 370 K has been described for the first time using the combination of the local electron density approximation and the dynamic mean field theory (LDA + DMFT). Based on the analysis of the spectral functions of Co 3d orbitals, the local magnetic moments of Co, and the frequency dependence of the imaginary part of the self-energy, the existence of the insulator-metal transition for 97% of the BaCoS2 unit cell volume at normal pressure has been established. Simultaneously, the high-to-low spin magnetic transition of Co2+ ions occurs.

Keywords

Spectral Function Wannier Function Dynamic Mean Field Theory Cobalt Sulfide High Spin Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Martinson, J. W. Schweitzer, and N. C. Baenziger, Phys. Rev. B: Condens. Matter 54, 11265 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    I. E. Grey and H. Steinfink, J. Am. Chem. Soc. 92, 5093 (1970).CrossRefGoogle Scholar
  3. 3.
    K. Takenaka, S. Kashima, A. Osuka, S. Sugai, Y. Yasui, S. Shamoto, and M. Sato, Phys. Rev. B: Condens. Matter 63, 115113 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    B. Fisher, J. Genossar, L. Patlagan, G. M. Reisner, and A. Knizhnik, Phys. Rev. B: Condens. Matter 59, 8745 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    D. Mandrus, J. L. Sarro, B. C. Chakoumakos, J. A. Fernandez-Baca, S. E. Nagle, and B. C. Sales, J. Appl. Phys. 81, 4620 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    G. J. Snyder, M. C. Gelabert, and F. J. DiSalvo, J. Solid State Chem. 113, 355 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    J.-S. Zhou, W. J. Zhu, and J. B. Goodenough, J. Phys.: Condens. Matter 14, 10699 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    H. Kang, I. V. Medvedeva, K. Bärner, and U. Sondermann, Physica B (Amsterdam) 245, 20 (1998).ADSGoogle Scholar
  9. 9.
    C. Looney, J. S. Schilling, L. S. Martinson, and J. W. Schweitzer, Phys. Rev. Lett. 76, 4789 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Yasui, H. Sasaki, S. Shamoto, and M. Sato, J. Phys. Soc. Jpn. 66, 3194 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    H. Sasaki, H. Harashina, K. Kodama, S. Shamoto, M. Sato, K. Kakurai, and M. Nishi, J. Phys. Soc. Jpn. 66, 3975 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    L. F. Mattheiss, Solid State Commun. 93, 879 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    I. Hase, N. Shirakawa, and Y. Nishihara, J. Phys. Soc. Jpn. 64, 2533 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    S. R. Krishnakumar, T. Saha-Dasgupta, N. Shanthi, P. Mahadevan, and D. D. Sarma, Phys. Rev. B: Condens. Matter 63, 045111 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    V. M. Zainullina and M. A. Korotin, Phys. Solid State 53(5), 978 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    J. W. Schweitzer, Phys. Rev. B: Condens. Matter 73, 104426 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    K. Kodama, S. Shamoto, H. Harashina, J. Takeda, M. Sato, K. Kakurai, and M. Nishi, J. Phys. Soc. Jpn. 65, 1782 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    W. Kohn and L. J. Sham, Phys. Rev. [Sect.] A 140, 1133 (1965).MathSciNetADSGoogle Scholar
  21. 21.
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    V. A. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B: Condens. Matter 71, 125119 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    O. K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev. B: Condens. Matter 34, 5253 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    J. Hubbard, Proc. R. Soc. London, Ser. A 276, 235 (1963).ADSGoogle Scholar
  25. 25.
    P. W. Anderson, Phys. Rev. 115, 2 (1959).MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Yu. A. Izyumov and V. I. Anisimov, Electronic Structure of Strongly Correlated Materials (Regular and Chaotic Dynamics, Moscow, 2009; Springer, Berlin, 2010).Google Scholar
  27. 27.
    P. Werner, A. Comanac, L. de’Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    W. E. Pickett, S. C. Erwin, and E. C. Ethridge, Phys. Rev. B: Condens. Matter 58, 1201 (1998).ADSCrossRefGoogle Scholar
  29. 29.
    M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    R. Nulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B: Condens. Matter 64, 045103 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. M. Zainullina
    • 1
    • 2
    Email author
  • N. A. Skorikov
    • 2
  • M. A. Korotin
    • 2
  1. 1.Institute of Solid State ChemistryUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Metal PhysicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations