Advertisement

Physics of the Solid State

, Volume 54, Issue 9, pp 1785–1789 | Cite as

Investigation of the thermal expansion and heat capacity of the CaCu3Ti4O12 ceramics

  • M. V. GorevEmail author
  • I. N. Flerov
  • A. V. Kartashev
  • S. Guillemet-Fritsch
Dielectrics

Abstract

The thermal expansion of the CaCu3Ti4O12 ceramics has been measured over a wide temperature range 120–1200 K. The high quality of the samples under study has been confirmed by good agreement of the results of measurements of the heat capacity in the range 2–300 K and in the vicinity of the phase transition of magnetic nature at 25 K with the data for the single crystal. No anomalies in the thermal expansion that can be associated with the phase transition at 726–732 K assumed by other investigators have been found. The influence exerted on the thermal expansion by the heat treatment of the sample in a helium atmosphere and in air has been investigated.

Keywords

Heat Capacity Thermal Expansion Thermal Expansion Coefficient Ceramic Sample CaCu 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Subramanian, D. Li, N. Duran, B. A. Reisner, and A. W. Sleight, J. Solid State Chem. 151, 323 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    S. M. Moussa and B. J. Kennedy, Mater. Res. Bull. 36, 2525 (2001).CrossRefGoogle Scholar
  3. 3.
    M. E. Cohen, J. B. Neaton, L. He, and D. Vanderbilt, J. Appl. Phys. 94, 3299 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    A. R. West, T. B. Adams, F. D. Morrison, and D. C. Sinclair, J. Eur. Ceram. Soc. 24, 1439 (2004).CrossRefGoogle Scholar
  5. 5.
    D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, Appl. Phys. Lett. 80, 2153 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    A. Onodera, M. Takesada, K. Kawatani, and S. Hiramatsu, Jpn. J. Appl. Phys. 47, 7753 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    A. Onodera, K. Kawatani, M. Takesada, M. Oda, and M. Ido, Jpn. J. Appl. Phys. 48, 09KF12 (2009).CrossRefGoogle Scholar
  8. 8.
    A. Onodera and M. Takesada, Ferroelectrics 379, 15 (2009).CrossRefGoogle Scholar
  9. 9.
    K. Kawatani, M. Takesada, M. Fukunaga, M. Oda, M. Ido, and A. Onodera, Ferroelectrics 402, 200 (2010).CrossRefGoogle Scholar
  10. 10.
    S. Guillemet-Fritsch, T. Lebey, M. Boulos, and B. Durand, J. Eur. Ceram. Soc. 26, 1245 (2006).CrossRefGoogle Scholar
  11. 11.
    E. S. Božin, V. Petkov, P. W. Barnes, P. M. Woodward, T. Vogt, S. D. Mahanti, and S. J. L. Billinge, J. Phys.: Condens. Matter 16, S5091 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    A. Koitzsch, G. Blumberg, A. Gozar, B. Dennis, A. P. Ramirez, S. Trebst, and S. Wakimoto, Phys. Rev. B: Condens. Matter 65, 052406 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Levchenko, L. Marchin, Y. Moriya, H. Kawaji, T. Atake, S. Guillement-Fritsch, B. Durand, and A. Navrotsky, J. Mater. Res. 23, 1522 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    I. Tsukada, R. Kammuri, T. Kida, S. Yoshii, T. Takeuchi, M. Hagiwara, M. Iwakawa, W. Kobayashi, and I. Terasaki, Phys. Rev. B: Condens. Matter 79, 054430 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    K. T. Jacob, G. Rajitha, G. M. Kale, A. Watson, and Z. Wang, J. Alloys Compd. 488, 35 (2009).CrossRefGoogle Scholar
  16. 16.
    C. P. Sun, J. Liu, J.-Y. Lin, C. Duan, W. N. Mei, and H. D. Yang, J. Phys.: Condens. Matter 20, 285214 (2008).CrossRefGoogle Scholar
  17. 17.
    A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S. M. Shapiro, Solid State Commun. 115, 217 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    L. Fang, M. R. Shen, and W. W. Cao, J. Appl. Phys. 95, 6483 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    T. B. Adams, D.C. Sinclair, and A. R. West, J. Am. Ceram. Soc. 89, 2833 (2006).CrossRefGoogle Scholar
  20. 20.
    V. P. B. Marques, A. Ries, A. Z. Simões, M. A. Ramírez, J. A. Varela, and E. Longo, Ceram. Int. 33, 1187 (2007).CrossRefGoogle Scholar
  21. 21.
    G. Deng and P. Muralt, Phys. Rev. B: Condens. Matter 81, 224111 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    J. Li, M. A. Subramanian, H. D. Rosenfeld, C. Y. Jones, B. H. Toby, and A. W. Sleight, Chem. Mater. 16, 5223 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. V. Gorev
    • 1
    • 2
    Email author
  • I. N. Flerov
    • 1
    • 2
  • A. V. Kartashev
    • 1
  • S. Guillemet-Fritsch
    • 3
  1. 1.Kirensky Institute of PhysicsSiberian Branch of the Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Institute of Engineering Physics and Radio ElectronicsSiberian Federal UniversityKrasnoyarskRussia
  3. 3.Institute Carnot CIRIMAT CNRS/UPS/INPUniversité de ToulouseToulouseFrance

Personalised recommendations