Physics of the Solid State

, Volume 54, Issue 8, pp 1663–1668 | Cite as

Ferroelectricity and pressure-induced phase transitions in HgTiO3

  • A. I. Lebedev
Phase Transitions


Using ab initio density functional theory, the ground state of mercury titanate is determined and phase transitions occurring in it at pressures P ≤ 210 kbar are analyzed. It is shown that the R3c structure experimentally observed in HgTiO3 is metastable at P = 0. The ground state structure at T = 0 varies according to the scheme \(R3c \to R\bar 3c \to Pbnm\) with increasing pressure in agreement with available experimental data. It is shown that the appearance of ferroelectricity in HgTiO3 at P = 0 is associated with an unstable soft mode. Some properties of crystals in the \(R\bar 3c\) phase are calculated, in particular, the band gap in the GW approximation (E g = 2.43 eV), which is in better agreement with experimental data than the value obtained in the LDA approximation (1.49 eV). An analysis of the thermodynamic stability explains why the synthesis of mercury titanate is possible only at high pressures.


Phonon Spectrum Ground State Structure Ferroelectric Phase Transition Interplane Distance Brillouin Zone Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. W. Sleight and C. T. Prewitt, J. Solid State Chem. 6, 509 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    Y. J. Shan, Y. Inaguma, T. Nakamura, and L. J. Gauckler, Ferroelectrics 326, 117 (2005).CrossRefGoogle Scholar
  3. 3.
    Y. J. Shan, Y. Inaguma, H. Tetsuka, T. Nakamura, and L. J. Gauckler, Ferroelectrics 337, 71 (2006).CrossRefGoogle Scholar
  4. 4.
    H. S. Nabi, R. Pentcheva, and R. Ranjan, J. Phys.: Condens. Matter 22, 045504 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    A. I. Lebedev, Phys. Solid State 51(2), 362 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    A. M. Rappe, K. M. Rabe, E. Kaxiras, and L. D. Joannopoulos, Phys. Rev. B: Condens. Matter 41, 1227 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    Springer Materials: The Landolt-Börnstein Database; URL
  8. 8.
    G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    N. L. Ross, J. Ko, and C. T. Prewitt, Phys. Chem. Miner. 16, 621 (1989).ADSGoogle Scholar
  10. 10.
    K. Leinenweber, W. Utsumi, Y. Tsuchida, T. Yagi, and K. Kurita, Phys. Chem. Miner. 18, 244 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    H. Yusa, M. Akaogi, N. Sata, H. Kojitani, R. mamoto, and Y. Ohishi, Phys. Chem. Miner. 33, 217 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    J. Li, X. Zhou, W. Zhu, J. Li, and F. Jing, J. Appl. Phys. 102, 083503 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations