Physics of the Solid State

, Volume 54, Issue 4, pp 790–797

Resistance to dynamic deformation and fracture of tantalum with different grain and defect structures

  • S. V. Razorenov
  • G. I. Kanel’
  • G. V. Garkushin
  • O. N. Ignatova
Mechanical Properties, Physics of Strength, and Plasticity

Abstract

This paper presents the results of measurements of the strength properties of technically pure tantalum under shock wave loading. It has been found that a decrease in the grain size under severe plastic deformation leads to an increase in the hardness of the material by approximately 25%, but the experimentally measured values of the dynamic yield stress for the fine-grained material prove to be less than those of the initial coarse-grained specimens. This effect has been explained by a higher rate of stress relaxation in the fine-grained material. The hardening of tantalum under shock wave loading at a pressure in the range 40–100 GPa leads to a further increase in the rate of stress relaxation, a decrease in the dynamic yield stress, and the disappearance of the difference between its values for the coarse-grained and fine-grained materials. The spall strength of tantalum increases by approximately 5% with a decrease in the grain size and remains unchanged after the shock wave loading. The maximum fracture stresses are observed in tantalum single crystals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shock Waves and High-Strain-Rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum, New York, 1981; Metallurgiya, Moscow, 1984).Google Scholar
  2. 2.
    R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].Google Scholar
  3. 3.
    R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metal Materials: Production, Structure and Properties (Akademkniga, Moscow, 2007) [in Russia].Google Scholar
  4. 4.
    Yu. R. Kolobov and R. Z. Valiev, Grain Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001; Cambridge International Science, Cambridge, 2007).Google Scholar
  5. 5.
    G. I. Kanel’, S. V. Razorenov, and V. E. Fortov, Izv. Akad. Nauk, Mekh. Tverd. Tela, No. 4, 86 (2005).Google Scholar
  6. 6.
    S. V. Razorenov, A. S. Savinykh, E. B. Zaretsky, G. I. Kanel, and Yu. R. Kolobov, Phys. Solid State 47(4), 663 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    G. V. Garkushin, O. N. Ignatova, G. I. Kanel’, L. Meier, and S. V. Razorenov, Izv. Akad. Nauk, Mekh. Tverd. Tela, No. 4, 155 (2010).Google Scholar
  8. 8.
    S. V. Razorenov, G. V. Garkushin, G. I. Kanel’, O. A. Kashin, and I. V. Ratochka, Phys. Solid State 53(4), 824 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    P. P. Gillis, K. G. Hoge, and R. J. Wasley, J. Appl. Phys. 42, 2145 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    T. A. Manson, B. L. Henrie, and K. A. Thomas, in Proceedings of the 14th APS Topical Conference on Shock Compression of Condensed Matter, Baltimore, Maryland, United States, July 31–August 5, 2005, Ed. by M.D. Furnish, M. L. Elert, T. P. Russell, and C. T. White (AIP Conf. Proc. (2006)), p. 638.Google Scholar
  11. 11.
    D. L. Tonks, B. L. Henrie, C. P. Trujillo, D. Holtkamp, and W. R. Thissell, in Proceedings of the 14th APS Topical Conference on Shock Compression of Condensed Matter, Baltimore, Maryland, United States, July 31–August 5, 2005, Ed. by M. D. Furnish, M. L. Elert, T. P. Russell, and C. T. White (AIP Conf. Proc. (2006)), p. 670.Google Scholar
  12. 12.
    J. F. Bingert, B. L. Henrie, and D. L. Worthington, Metall. Mater. Trans. A 38, 1712 (2007).CrossRefGoogle Scholar
  13. 13.
    F. Llorca and G. Roy, in Proceedings of the 13th APS Topical Conference on Shock Compression of Condensed Matter, Portland, Oregon, United States, July 20–25, 2003, Ed. by M. D. Furnish, Y. M. Gupta, and J. W. Forbes (AIP Conf. Proc. (2004)), p. 589.Google Scholar
  14. 14.
    W. R. Thissell, A. K. Zurek, D. L. Tonks, and R. S. Hixson, in Proceedings of the Conference on Shock Compression of Condensed Matter, Snowbird, Utah, United States, June 28–July 2, 1999, Ed. by M. L. Elert, W. T. Buttler, M. D. Furnish, W. W. Anderson, and W. G. Proud (AIP Conf. Proc. (2000)), p. 451.Google Scholar
  15. 15.
    L. C. Chhabildas, W. M. Trott, W. D. Reinhart, J. R. Cogar, and G. A. Mann, in Proceedings of the Conference of the APS Topical Group on Shock Compression of Condensed Matter, Atlanta, Georgia, United States, June 24–29, 2001, Ed. by M. D. Furnish, N. N. Thadhani, and Y. Horie (AIP Conf. Proc. (2002)), p. 483.Google Scholar
  16. 16.
    M. D. Furnish, G. T. Gray III, and J. F. Bingert, in Proceedings of the 17th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter, Nashville, Tennessee, United States, June 28–July 3, 2009, Ed. by M. L. Elert, W. T. Buttler, M. D. Furnish, W. W. Anderson, and W. G. Proud (AIP Conf. Proc. (2009)), p. 1089.Google Scholar
  17. 17.
    M. D. Furnish, W. D. Reinhart, W. M. Trott, L. C. Chhabildas, and T. J. Vogler, in Proceedings of the 14th APS Topical Conference on Shock Compression of Condensed Matter, Baltimore, Maryland, United States, July 31–August 5, 2005, Ed. by M. D. Furnish, M. L. Elert, T. P. Russell, and C. T. White (AIP Conf. Proc. (2006)), p. 615.Google Scholar
  18. 18.
    J. P. Cuq-Lelandias, M. Boustie, L. Soulard, L. Berthe, T. De Resseguier, P. Combis, J. Bontaz-Carion, and E. Lescoute, RPJ Web Conf. 10, 00014 (2010).CrossRefGoogle Scholar
  19. 19.
    D. B. Holtkamp, D. A. Clark, E. N. Ferm, R. A. Gallegos, D. Hammon, and W. F. Hamsing, in Proceedings of the Conference of the APS Topical Group on Shock Compression of Condensed Matter, Portland, Oregon, United States, July 20–25, 2003, Ed. by M. D. Furnish, N. N. Thadhani, and Y. Horie (AIP Conf. Proc. (2004)), p. 739.Google Scholar
  20. 20.
    J. R. Asay, T. Ao, T. J. Vogler, J.-P. Davis, and G. T. Gray III, J. Appl. Phys. 106, 073515 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    L. E. Murr, M. A. Meyers, C. S. Niou, Y. J. Chen, S. Parru, and C. Kennedy, Acta Mater. 45, 1, 157 (1997).CrossRefGoogle Scholar
  22. 22.
    J. M. McNaney, L. M. Hsung, N. R. Barton, and M. Kumar, in Proceedings of the 17th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter, Nashville, Tennessee, United States, June 28–July 3, 2009, Ed. by M. L. Elert, W. T. Buttler, M. D. Furnish, W. W. Anderson, and W. G. Proud (AIP Conf. Proc. (2009)), p. 1127.Google Scholar
  23. 23.
    G. I. Kanel’, Prikl. Mekh. Tekh. Fiz. 42(2), 194 (2001).Google Scholar
  24. 24.
    G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Matter (Yanus-K, Moscow, 1996) [in Russian].Google Scholar
  25. 25.
    L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).ADSCrossRefGoogle Scholar
  26. 26.
    G. E. Duvall, in Stress Waves in Anelastic Solids, Ed. by H. Kolsky and W. Prager (Springer, Berlin, 1964), p. 20.CrossRefGoogle Scholar
  27. 27.
    G. I. Kanel, S. V. Razorenov, A. V. Utkin, V. E. Fortov, K. Baumung, H. U. Karow, D. Rush, and V. Licht, J. Appl. Phys. 74(12), 7162 (1993).ADSCrossRefGoogle Scholar
  28. 28.
    T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture (Springer, New York, 2003).Google Scholar
  29. 29.
    A. V. Utkin, Prikl. Mekh. Tekh. Fiz. 38(6), 157 (1997).MATHGoogle Scholar
  30. 30.
    G. I. Kanel, Int. J. Fract. 163(1–2), 173 (2010).MATHCrossRefGoogle Scholar
  31. 31.
    G. Roy, Thesis of Doctor of Sciences (University of Poitiers, Poitiers, France, 2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. V. Razorenov
    • 1
  • G. I. Kanel’
    • 2
  • G. V. Garkushin
    • 1
  • O. N. Ignatova
    • 3
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  3. 3.Russian Federal Nuclear Center—The All-Russia Research Institute of Experimental PhysicsSarov, Nizhni Novgorod regionRussia

Personalised recommendations