Physics of the Solid State

, Volume 54, Issue 2, pp 394–403 | Cite as

Chemical and phase compositions of silicon oxide films with nanocrystals prepared by carbon ion implantation

  • A. V. Boryakov
  • D. E. Nikolitchev
  • D. I. Tetelbaum
  • A. I. Belov
  • A. V. Ershov
  • A. N. Mikhaylov
Low-Dimensional Systems


The chemical and phase compositions of silicon oxide films with self-assembled nanoclusters prepared by ion implantation of carbon into SiO x (x < 2) suboxide films with subsequent annealing in a nitrogen atmosphere have been investigated using X-ray photoelectron spectroscopy in combination with depth profiling by ion sputtering. It has been found that the relative concentration of oxygen in the maximum of the distribution of implanted carbon atoms is decreased, whereas the relative concentration of silicon remains almost identical over the depth in the layer containing the implanted carbon. The in-depth distributions of carbon and silicon in different chemical states have been determined. In the regions adjacent to the layer with a maximum carbon content, the annealing results in the formation of silicon oxide layers, which are close in composition to SiO2 and contain silicon nanocrystals, whereas the implanted layer, in addition to the SiO2 phase, contains silicon oxide species Si2+ and Si3+ with stoichiometric formulas SiO and Si2O3, respectively. The film contains carbon in the form of SiC and elemental carbon phases. The lower limit of the average size of silicon nanoclusters has been estimated as ∼2 nm. The photoluminescence spectra of the films have been interpreted using the obtained results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Rebohle, T. Gebel, H. Frob, H. Reuther, and W. Skorupa, Appl. Surf. Sci. 184, 156 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    L. J. Mitchell, F. Naab, O. W. Holland, J. L. Duggan, and F. D. McDaniel, J. Non-Cryst. Solids 352, 2562 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    A. Pérez-Rodríguez, O. González-Varona, B. Garrido, P. Pellegrino, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, J. Appl. Phys. 94, 254 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    D. I. Tetelbaum, A. N. Mikhaylov, V. K. Vasiliev, A. I. Belov, A. I. Kovalev, D. L. Wainstein, Yu. A. Mendeleva, T. G. Finstad, S. Foss, Y. Golan, and A. Osherov, Surf. Coat. Technol. 203, 2658 (2009).CrossRefGoogle Scholar
  5. 5.
    A. I. Belov, A. N. Mikhaylov, D. E. Nikolitchev, A. V. Boryakov, A. P. Sidorin, A. P. Gratchev, A. V. Ershov, and D. I. Tetelbaum, Semiconductors 44(11), 1450 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    D. Wainstein, A. Kovalev, D. Tetelbaum, A. Mikhaylov, and A. Belov, Surf. Interface Anal. 40, 571 (2008).CrossRefGoogle Scholar
  7. 7.
    J. F. Ziegler,
  8. 8.
    G. A. Kachurin, S. G. Yanovskaya, V. A. Volodin, V. G. Kesler, A. F. Leier, and M.-O. Ruault, Semiconductors 36(6), 647 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    K. Sato, T. Izumi, M. Iwase, Y. Show, H. Morisaki, T. Yaguchi, and T. Kamino, Appl. Surf. Sci. 216, 376 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    D. I. Tetelbaum, O. N. Gorshkov, A. P. Kasatkin, A. N. Mikhaylov, A. I. Belov, D. M. Gaponova, and S. V. Morozov, Phys. Solid State 47(1), 13 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    M. P. Seah, in Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. P. Seah (Wiley, New York, 1983; Mir, Moscow, 1987), p. 203.Google Scholar
  12. 12.
    Handbooks of Monochromatic XPS Spectra, Vol. 1: The Elements and Native Oxides, Ed. by B. V. Crist (XPS International LLC, Mountain View, California, United States, 1999).Google Scholar
  13. 13.
    Handbooks of Monochromatic XPS Spectra, Vol. 2: Commercially Pure Binary Oxides and a Few Common Carbonates and Hydroxides, B. V. Crist (XPS International LLC, Mountain View, California, United States, 2005).Google Scholar
  14. 14.
    XPS/AES software.
  15. 15.
    N. I. Fainer, M. L. Kosinova, and Yu. M. Rumyantsev, Ross. Khim. Zh. XLV, 101 (2001).Google Scholar
  16. 16.
    X. L. Wu, Y. Gu, S. J. Xiong, J. M. Zhu, G. S. Huang, X. M. Bao, and G. G. Siu, J. Appl. Phys. 94, 5247 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    M. Nakazawa, S. Kawase, and H. Sekiyama, J. Appl. Phys. 65, 4014 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    C. D. Wagner, A. V. Naumkin, A. K.-V. J. W. Allison, C. J. Powell, J. R. Rumble, Jr., NIST X-Ray Photoelectron Spectroscopy Database;
  19. 19.
    B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids (Metallurgiya, Moscow, 1974; Oxonian, New Delhi, 1985).Google Scholar
  20. 20.
    V. I. Vedeneev, L. V. Gurvich, V. N. Kondrat’ev, V. A. Medvedev, and E. L. Frankevich, Energies of Chemical Bonds. Ionization Potentials and Electron Affinities: A Handbook (Academy of Sciences of the USSR, Moscow, 1962) [in Russian].Google Scholar
  21. 21.
    D. A. Shirley, Phys. Rev. B: Solid State 5, 4709 (1972).ADSCrossRefGoogle Scholar
  22. 22.
    B. Garrido Fernandez, M. López, C. García, A. érez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, J. Appl. Phys. 91, 798 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    J. Y. Fan, X. L. Wu, and P. K. Chu, Prog. Mater. Sci. 51, 983 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. V. Boryakov
    • 1
  • D. E. Nikolitchev
    • 1
  • D. I. Tetelbaum
    • 1
  • A. I. Belov
    • 1
  • A. V. Ershov
    • 1
  • A. N. Mikhaylov
    • 1
  1. 1.Physico-Technical Research InstituteLobachevsky State University of Nizhni Novgorod-National Research UniversityNizhni NovgorodRussia

Personalised recommendations