Advertisement

Physics of the Solid State

, Volume 53, Issue 12, pp 2495–2499 | Cite as

IR spectroscopy of quartz nanocrystals formed during intense crushing of a heterogeneous material (granite)

  • V. I. VettegrenEmail author
  • R. I. Mamalimov
  • G. A. Sobolev
  • S. M. Kireenkova
  • Yu. A. Morozov
  • A. I. Smul’skaya
Optical Properties

Abstract

The spectra of the imaginary part ɛ″(ν) of the permittivity of quartz single crystals and a heterogeneous material, i.e., pseudotachylite, formed during intense crushing of granite in the region of the seismogenic Earth’s crust fault have been calculated from IR reflection spectra. It has been found that all strong bands in the pseudotachylite spectrum ɛ″(ν) correspond to lattice vibrations in quartz nanocrystals. Bands are asymmetrically broadened due to dielectric and phonon confinements. Linear sizes of quartz nanocrystals have been estimated from the broadening as ∼70 nm. The frequency of nanocrystal lattice vibrations is higher than that of the macrocrystal, which is caused by lattice compression. The internal stresses which could cause the observed change in the frequency are ∼200 MPa.

Keywords

Lattice Vibration Lattice Compression Band Shape Phonon Confinement Quartz Single Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Sobolev, V. I. Vettegren, S. M. Kireenkova, V. B. Kulik, Yu. A. Morozov, and A. I. Smul’skaya, Izv., Phys. Solid Earth 43(6), 447 (2007).CrossRefADSGoogle Scholar
  2. 2.
    G. A. Sobolev, V. I. Vettegren’, S. M. Kireenkova, V. B. Kulik, Yu. A. Morozov, and A. I. Smul’skaya, Geofiz. Zh. 29, 10 (2007).Google Scholar
  3. 3.
    G. A. Sobolev, S. M. Kireenkova, Yu. A. Morozov, A. I. Smul’skaya, V. A. Tsel’movich, V. I. Vettegren, V. B. Kulik, and V. A. Pikulin, Izv., Phys. Solid Earth 45(9), 731 (2009).CrossRefADSGoogle Scholar
  4. 4.
    G. A. Sobolev, Yu. S. Genshaft, S. M. Kireenkova, Yu. A. Morozov, A. I. Smul’skaya, V. B. Vettegren’, and V. B. Kulik, Izv., Phys. Solid Earth 47(6), 465 (2011).CrossRefADSGoogle Scholar
  5. 5.
    O. K. Chediya, Morphological Structures and the Latest Tectonic Tien Shan (Ilim, Frunze, 1986) [in Russian].Google Scholar
  6. 6.
    B. M. Bogachkin, A. M. Korzhenkov, E. Mamyrov, Yu. V. Nechaev, M. Omuraliev, A. E. Petrosyan, K. G. Pletnev, E. A. Rogozhin, and T. A. Charimov, Izv., Phys. Solid Earth 33(11), 867 (1997).Google Scholar
  7. 7.
    Yu. A. Morozov, in Mechanisms of Pattern Formation in the Lithosphere and Seismicity (Schmidt Institute of Physics of the Earth, Academy of Sciences of the USSR, Moscow, 1991), p. 179 [in Russian].Google Scholar
  8. 8.
    Yu. A. Morozov, Geotectonics 36(6), 431 (2002).Google Scholar
  9. 9.
    W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324 (1961).CrossRefADSGoogle Scholar
  10. 10.
    J. Etchepare, M. Merian, and P. Kaplan, J. Chem. Phys. 60, 1873 (1974).CrossRefADSGoogle Scholar
  11. 11.
    M. Ocafia, V. Fornes, J. V. Garcia-Ramos, and C. J. Serna, Phys. Chem. Miner. 14, 527 (1987).CrossRefADSGoogle Scholar
  12. 12.
    A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108-1 (2005).CrossRefADSGoogle Scholar
  13. 13.
  14. 14.
    R. F. Wallis, I. P. Ipatova, and A. A. Maradudin, Sov. Phys. Solid State 8(4), 850 (1966).Google Scholar
  15. 15.
    I. P. Ipatova, A. A. Maradudin, and R. F. Wallis, Phys. Rev. 155, 882 (1967).CrossRefADSGoogle Scholar
  16. 16.
    O. Madelung, Festköpertheorie (Springer, Berlin, 1972).CrossRefGoogle Scholar
  17. 17.
    G. S. Landsberg, Optics (FIZMATLIT, Moscow, 2003) [in Russian].Google Scholar
  18. 18.
    N. G. Bakhshiev, Spectroscopy of Intermolecular Interactions (Leningrad State University, Leningrad, 1972) [in Russian].Google Scholar
  19. 19.
    V. S. Libov, Zh. Fiz. Khim. 54, 817 (1980).Google Scholar
  20. 20.
    I. I. Shaganov, T. S. Perova, V. A. Melnikov, S. A. Dyakov, and K. Berwick, J. Phys. Chem. C 114, 16071 (2010).CrossRefGoogle Scholar
  21. 21.
    L. Genzel and T. P. Martin, Phys. Status Solidi B 51, 91 (1972).CrossRefADSGoogle Scholar
  22. 22.
    S. Hayashi, N. Nakamori, and H. Kanamori, J. Phys. Soc. Jpn. 46, 176 (1979).CrossRefADSGoogle Scholar
  23. 23.
    K. K. Tiong, P. M. Amirtharaj, F. H. Pollak, and D. E. Aspness, Appl. Phys. Lett. 44, 122 (1984).CrossRefADSGoogle Scholar
  24. 24.
    H. Shen and F. H. Pollak, Appl. Phys. Lett. 45, 692 (1984).CrossRefADSGoogle Scholar
  25. 25.
    H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).CrossRefADSGoogle Scholar
  26. 26.
    I. H. Cambell and P. V. Faucher, Solid State Commun. 58, 739 (1986).CrossRefADSGoogle Scholar
  27. 27.
    A. G. Ludanov, A. A. Fotchenkov, and L. A. Yakovlev, Sov. Phys. Acoust. 22(4), 343 (1976).Google Scholar
  28. 28.
    D. Krinsley and I. Smalley, Science (Washington) 180, 1277 (1973).CrossRefADSGoogle Scholar
  29. 29.
    J. Hlavay, K. Jonas, S. Elek, and J. Inczedy, Clays Clay Miner. 26, 139 (1978).CrossRefGoogle Scholar
  30. 30.
    D. Strauch and B. Dorner, J. Phys.: Condens. Matter 5, 6149 (1993).CrossRefADSGoogle Scholar
  31. 31.
    L. Levien, C. T. Prewitt, and D. Weidner, J. Am. Mineral. 65, 920 (1980).Google Scholar
  32. 32.
    K. De Boer, A. P. J. Jansen, R. A. van Santen, G. W. Watston, and S. C. Parker, Phys. Rev. B: Condens. Matter 54, 826 (1996).CrossRefADSGoogle Scholar
  33. 33.
    D. W. Johnson, J. Phys. A: Math. Gen. 8, 490 (1975).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. I. Vettegren
    • 1
    Email author
  • R. I. Mamalimov
    • 1
  • G. A. Sobolev
    • 2
  • S. M. Kireenkova
    • 2
  • Yu. A. Morozov
    • 2
  • A. I. Smul’skaya
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia

Personalised recommendations