Physics of the Solid State

, Volume 53, Issue 12, pp 2463–2467 | Cite as

Quasi-two-dimensional ferroelectricity in KNbO3/KTaO3 superlattices

Ferroelectricity

Abstract

First-principles density functional theory is used to calculate the phonon spectrum in the paraelectric phase, the ground-state structure and polarization distribution in the polar phase, and energies of ferro- and antiferroelectrically ordered phases of free-standing (KNbO3)1(KTaO3)n ferroelectric superlattices with n = 1–7. It is established that quasi-two-dimensional ferroelectricity with polarization oriented in the layer plane, which weakly interacts with polarization in neighboring layers, appears in potassium niobate layers with a thickness of one unit cell in the superlattices. The possibility of using of such ferroelectric superlattices as a medium for three-dimensional information recording is shown.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Tybell, C. H. Ahn, and J.-M. Triscone, Appl. Phys. Lett. 75, 856 (1999).CrossRefADSGoogle Scholar
  2. 2.
    P. Ghosez and K. M. Rabe, Appl. Phys. Lett. 76, 2767 (2000).CrossRefADSGoogle Scholar
  3. 3.
    B. Meyer and D. Vanderbilt, Phys. Rev. B: Condens. Matter 63, 205426 (2001).CrossRefADSGoogle Scholar
  4. 4.
    J. Junquera and P. Ghosez, Nature (London) 422, 506 (2003).CrossRefADSGoogle Scholar
  5. 5.
    N. Sai, A. M. Kolpak, and A. M. Rappe, Phys. Rev. B: Condens. Matter 72, 020101 (2005).CrossRefADSGoogle Scholar
  6. 6.
    Y. Umeno, B. Meyer, C. Elsässer, and P. Gumbsch, Phys. Rev. B: Condens. Matter 74, 060101 (2006).CrossRefADSGoogle Scholar
  7. 7.
    A. V. Bune, V. M. Fridkin, S. Ducharme, L. M. Blinov, S. P. Palto, A. V. Sorokin, S. G. Yudin, and A. Zlatkin, Nature (London) 391, 874 (1998).CrossRefADSGoogle Scholar
  8. 8.
    J. Padilla and D. Vanderbilt, Phys. Rev. B: Condens. Matter 56, 1625 (1997).CrossRefADSGoogle Scholar
  9. 9.
    B. Meyer, J. Padilla, and D. Vanderbilt, Faraday Discuss. 114, 395 (1999).CrossRefADSGoogle Scholar
  10. 10.
    E. Almahmoud, Y. Navtsenya, I. Kornev, H. Fu, and L. Bellaiche, Phys. Rev. B: Condens. Matter 70, 220102 (2004).CrossRefADSGoogle Scholar
  11. 11.
    V. S. Zhandun and V. I. Zinenko, Phys. Solid State 51(9), 1894 (2009).CrossRefADSGoogle Scholar
  12. 12.
    U. T. Höchli, H. E. Weibel, and L. A. Boatner, Phys. Rev. Lett. 39, 1158 (1977).CrossRefADSGoogle Scholar
  13. 13.
    R. L. Prater, L. L. Chase, and L. A. Boatner, Phys. Rev. B: Condens. Matter 23, 221 (1981).CrossRefADSGoogle Scholar
  14. 14.
    J. J. van der Klink, S. Rod, and A. Chtelain, Phys. Rev. B: Condens. Matter 33, 2084 (1986).CrossRefADSGoogle Scholar
  15. 15.
    G. A. Samara, Phys. Rev. Lett. 53, 298 (1984).CrossRefADSGoogle Scholar
  16. 16.
    O. Hanske-Petitpierre, Y. Yacoby, J. M. de Leon, E. A. Stern, and J. J. Rehr, Phys. Rev. B: Condens. Matter 44, 6700 (1991).CrossRefADSGoogle Scholar
  17. 17.
    Y. Girshberg and Y. Yacoby, J. Phys.: Condens. Matter 13, 8817 (2001).CrossRefADSGoogle Scholar
  18. 18.
    A. V. Postnikov, T. Neumann, and G. Borstel, Ferroelectrics 164, 101 (1995).CrossRefGoogle Scholar
  19. 19.
    R. I. Eglitis, E. A. Kotomin, G. Borstel, and S. Dorfman, J. Phys.: Condens. Matter 10, 6271 (1998).CrossRefADSGoogle Scholar
  20. 20.
    O. E. Kvyatkovskii, Phys. Solid State 44 (6), 1135 (2002).Google Scholar
  21. 21.
    H.-M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, L. A. Géa, P. J. Marrero, and D. P. Norton, Appl. Phys. Lett. 68, 1488 (1996).CrossRefADSGoogle Scholar
  22. 22.
    H.-M. Christen, E. D. Specht, D. P. Norton, M. F. Chisholm, and L. A. Boatner, Appl. Phys. Lett. 72, 2535 (1998).CrossRefADSGoogle Scholar
  23. 23.
    E. D. Specht, H.-M. Christen, D. P. Norton, and L. A. Boatner, Phys. Rev. Lett. 80, 4317 (1998).CrossRefADSGoogle Scholar
  24. 24.
    M. Sepliarsky, S. R. Phillpot, D. Wolf, M. G. Stachiotti, and R. L. Migoni, Phys. Rev. B: Condens. Matter 64, 060101 (2001).CrossRefADSGoogle Scholar
  25. 25.
    M. Sepliarsky, S. R. Phillpot, D. Wolf, M. G. Stachiotti, and R. L. Migoni, J. Appl. Phys. 90, 4509 (2001).CrossRefADSGoogle Scholar
  26. 26.
    M. Sepliarsky, S. R. Phillpot, M. G. Stachiotti, and R. L. Migoni, J. Appl. Phys. 91, 3165 (2002).CrossRefADSGoogle Scholar
  27. 27.
    J. Sigman, D. P. Norton, H. M. Christen, P. H. Fleming, and L. A. Boatner, Phys. Rev. Lett. 88, 097601 (2002).CrossRefADSGoogle Scholar
  28. 28.
    J. Sigman, H. J. Bae, D. P. Norton, J. Budai, and L. A. Boatner, J. Vac. Sci. Technol., A 22, 2010 (2004).CrossRefADSGoogle Scholar
  29. 29.
    S. Hao, G. Zhou, X. Wang, J. Wu, W. Duan, and B.-L. Gu, Appl. Phys. Lett. 86, 232903 (2005).CrossRefADSGoogle Scholar
  30. 30.
    A. I. Lebedev, Phys. Solid State 52 (7), 1448 (2010).Google Scholar
  31. 31.
    S. Prosandeev, E. Cockayne, B. Burton, and A. Turik, arXiv:cond-mat/0401039 (2004).Google Scholar
  32. 32.
    X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, and D. C. Allan, Comput. Mater. Sci. 25, 478 (2002).CrossRefGoogle Scholar
  33. 33.
    A. I. Lebedev, Phys. Solid State 51 (2), 362 (2009).Google Scholar
  34. 34.
    W. Kleemann, F. J. Schäfer, and M. D. Fontana, Phys. Rev. B: Condens. Matter 30, 1148 (1984).CrossRefADSGoogle Scholar
  35. 35.
    P. Paruch, T. Tybell, and J.-M. Triscone, Appl. Phys. Lett. 79, 530 (2001).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations