Advertisement

Physics of the Solid State

, Volume 53, Issue 11, pp 2398–2407 | Cite as

Structure, electrical resistivity, and thermal conductivity of beech wood biocarbon produced at carbonization temperatures below 1000°C

  • L. S. Parfen’eva
  • T. S. Orlova
  • N. F. Kartenko
  • B. I. Smirnov
  • I. A. Smirnov
  • H. Misiorek
  • A. Jezowski
  • J. Muha
  • M. C. Vera
Thermal Properties

Abstract

This paper reports on measurements of the thermal conductivity κ and the electrical resistivity ρ in the temperature range 5–300 K, and, at 300 K, on X-ray diffraction studies of high-porosity (with a channel pore volume fraction of ∼47 vol %) of the beech wood biocarbon prepared by pyrolysis (carbonization) of tree wood in an argon flow at the carbonization temperature T carb = 800°C. It has been shown that the biocarbon template of the samples studied represents essentially a nanocomposite made up of amorphous carbon and nanocrystallites—“graphite fragments” and graphene layers. The sizes of the nanocrystallites forming these nanocomposites have been determined. The dependences ρ(T) and κ(T) have been measured for the samples cut along and perpendicular to the tree growth direction, thus permitting determination of the magnitude of the anisotropy of these parameters. The dependences ρ(T) and κ(T), which have been obtained for beech biocarbon samples prepared at T carb = 800°C, are compared with the data amassed by us earlier for samples fabricated at T carb = 1000 and 2400°C. The magnitude and temperature dependence of the phonon thermal conductivity of the nanocomposite making up the beech biocarbon template at T carb = 800°C have been found.

Keywords

Thermal Conductivity Electrical Resistivity Carb Amorphous Carbon Tree Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Hernandez, I. Hernandez-Calderon, C. A. Luengo, and R. Tsu, Carbon 20, 201 (1982).CrossRefGoogle Scholar
  2. 2.
    A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, D. Domíngez-Rodriguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1, 56 (2004).CrossRefGoogle Scholar
  3. 3.
    V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51(11), 2247 (2009).CrossRefADSGoogle Scholar
  4. 4.
    V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428, 225 (2006).CrossRefGoogle Scholar
  5. 5.
    T. E. Wilkes, J. V. Pastor, J. Llorca, and K. T. Faber, J. Mater. Res. 23, 1732 (2008).CrossRefADSGoogle Scholar
  6. 6.
    V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martinez-Fernandez, Phys. Solid State 53(2), 276 (2011).CrossRefADSGoogle Scholar
  7. 7.
    P. Geil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).CrossRefGoogle Scholar
  8. 8.
    C. E. Byrne and D. C. Nagle, Carbon 35, 267 (1997).CrossRefGoogle Scholar
  9. 9.
    C. Zollfrank and H. Siber, J. Eur. Ceram. Soc. 24, 495 (2004).CrossRefGoogle Scholar
  10. 10.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sha- renkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 48(3), 441 (2006).CrossRefADSGoogle Scholar
  11. 11.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 50(12), 2245 (2008).CrossRefADSGoogle Scholar
  12. 12.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 51(10), 2023 (2009).CrossRefADSGoogle Scholar
  13. 13.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52(6), 1115 (2010).CrossRefADSGoogle Scholar
  14. 14.
    A. K. Kercher and D. C. Nagle, Carbon 41, 15 (2003).CrossRefGoogle Scholar
  15. 15.
    F. Carmona, P. Delhaes, G. Keryer, and J. P. Manceau, Solid State Commun. 14, 1183 (1974).CrossRefADSGoogle Scholar
  16. 16.
    E. E. Loebner, Phys. Rev. 102, 46 (1956).CrossRefADSGoogle Scholar
  17. 17.
    L. S. Parfen’eva, B. I. Smirnov, I. A. Smirnov, D. Wlosewicz, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, F. M. Varela-Feria, and A. I. Krivchikov, Phys. Solid State 48(11), 2056 (2006).CrossRefADSGoogle Scholar
  18. 18.
    I. A. Smirnov, T. S. Orlova, B. I. Smirnov, D. Wlosewicz, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 51(11), 2264 (2009).CrossRefADSGoogle Scholar
  19. 19.
    L. S. Parfen’eva, B. I. Smirnov, I. A. Smirnov, D. Wlosewicz, H. Misiorek, Cz. Sulkowski, A. Jezowski, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 51(11), 2252 (2009).CrossRefADSGoogle Scholar
  20. 20.
    L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, D. Wlosewicz, and A. Jezowski, Phys. Solid State 53(8), 1747 (2011).CrossRefGoogle Scholar
  21. 21.
    F. M. Varela-Feria, PhD Thesis (Universidad de Sevilla, Seville, Spain, 2004).Google Scholar
  22. 22.
    A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl. Phys. 20, 1500 (1987).CrossRefADSGoogle Scholar
  23. 23.
    A. K. Kercher and D. C. Nagle, Carbon 40, 3121 (2002).CrossRefGoogle Scholar
  24. 24.
    B. E. Warren, Phys. Rev. 59, 693 (1941).CrossRefzbMATHADSGoogle Scholar
  25. 25.
    A. I. Kitaigorodskii, X-Ray Structural Analysis of Finely-Crystalline and Amorphous Solids (GITTL, Moscow, 1952) [in Russian].Google Scholar
  26. 26.
    A. Guinier, Théorie et Technique de la Radiocristallographie (Dunod, Paris, 1956; GIFML, Moscow, 1961) [in French and in Russian].Google Scholar
  27. 27.
    A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P. C. Eklund, Nano Lett. 6, 2667 (2006).CrossRefADSGoogle Scholar
  28. 28.
    E. A. Bel’skaya and A. S. Tarabanov, in Thermophysical Properties of Solids (Naukova Dumka, Kiev, 1970), p. 111 [in Russian].Google Scholar
  29. 29.
    A. L. Love, J. Appl. Phys. 22, 252 (1951).ADSGoogle Scholar
  30. 30.
    E. Ya. Litovskii, Izv. Akad. Nauk SSSR, Neorg. Mater. 16, 559 (1980).Google Scholar
  31. 31.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. S. Parfen’eva
    • 1
  • T. S. Orlova
    • 1
  • N. F. Kartenko
    • 1
  • B. I. Smirnov
    • 1
  • I. A. Smirnov
    • 1
  • H. Misiorek
    • 2
  • A. Jezowski
    • 2
  • J. Muha
    • 2
  • M. C. Vera
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Trzebiatowski Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWroclawPoland
  3. 3.Departamento de Fisica de la Materia Condensada — Instituto de Ciencia de Materiales de Sevilla (ICMSE)Universidad de SevillaSevillaSpain

Personalised recommendations