Advertisement

Physics of the Solid State

, Volume 53, Issue 11, pp 2385–2392 | Cite as

Structure of carbinoid nanotubes and carbinofullerenes

  • E. A. BelenkovEmail author
  • I. V. Shakhova
Fullerenes

Abstract

Molecular mechanics methods have been used to calculate the geometrically optimized structure of carbinoid layers, carbinoid nanotubes, and carbinofullerenes consisting of carbine chains linked by atoms in sp 2 and/or sp 3 hybridization states. Energy characteristics of carbinoid nanostructures have been calculated by semi-empirical quantum-mechanical methods. A structural classification of framework carbinoid nanostructures has been proposed. The dependence of specific binding energies of carbinoid nanostructures on the ratio sp 2/sp and their geometrical sizes has been determined.

Keywords

Fullerene Hybridization State Quantum Mechanical Method Molecular Mechanic Method MNDO Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).CrossRefADSGoogle Scholar
  2. 2.
    H. Kroto, Nobel Lecture (Nobel Foundation, Stockholm, 1997).Google Scholar
  3. 3.
    S. Iijima, Nature (London) 354(6348), 56 (1991).CrossRefADSGoogle Scholar
  4. 4.
    M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys. Rev. B: Condens. Matter 45, 6234 (1992).CrossRefADSGoogle Scholar
  5. 5.
    E. A. Belenkov and Yu. A. Zinatulina, Vestn. Chelyab. Gos. Univ., Fiz. 3, 32 (2008).Google Scholar
  6. 6.
    R. H. Baughman, H. Eckhard, and M. Kertesz, J. Chem. Phys. 87, 6687 (1987).CrossRefADSGoogle Scholar
  7. 7.
    E. A. Belenkov, Izv. Chelyab. Nauchn. Tsentra, No. 1, 12 (2002).Google Scholar
  8. 8.
    E. A. Belenkov, Izv. Chelyab. Nauchn. Tsentra, No. 1, 17 (2002).Google Scholar
  9. 9.
    V. R. Coluci, S. F. Braga, and S. B. Legoas, Phys. Rev. B: Condens. Matter 68, 035430 (2003).CrossRefADSGoogle Scholar
  10. 10.
    A. N. Enyashin, A. A. Sofronov, Yu. N. Makurin, and A. L. Ivanovskii, J. Mol. Struct. (THEOCHEM) 684, 29 (2004).CrossRefGoogle Scholar
  11. 11.
    W. Luo and W. Windl, Carbon 47, 367 (2009).CrossRefGoogle Scholar
  12. 12.
    V. I. Kasatochkin, V. V. Korshak, Yu. P. Kudryavtsev, A. M. Sladkov, and I. E. Sterenberg, Carbon 11, 70 (1973).CrossRefGoogle Scholar
  13. 13.
    R. B. Heimann, J. Kleiman, and N. M. Salansky, Nature (London) 306(5939), 164 (1983).CrossRefADSGoogle Scholar
  14. 14.
    V. D. Blank, B. A. Kulnitskiy, Y. V. Tatyanin, and O. M. Zhigalina, Carbon 37, 549 (1999).CrossRefGoogle Scholar
  15. 15.
    I. V. Shakhova and E. A. Belenkov, Vestn. Chelyab. Gos. Univ., No. 12, 33 (2010).Google Scholar
  16. 16.
    U. Berkert and N. L. Allinger, ACS Monogr. 177, 1 (1982).Google Scholar
  17. 17.
    J. J. P. Stewart, J. Comput. Chem. 10, 209 (1989).CrossRefGoogle Scholar
  18. 18.
    J. J. P. Stewart, J. Comput. Chem. 10, 221 (1989).CrossRefGoogle Scholar
  19. 19.
    P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the 21st Century (Cambridge University Press, New York, 1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Chelyabinsk State UniversityChelyabinskRussia

Personalised recommendations