Physics of the Solid State

, Volume 53, Issue 7, pp 1353–1361 | Cite as

Effect of doping by boron, carbon, and nitrogen atoms on the magnetic and photocatalytic properties of anatase

  • V. M. ZainullinaEmail author
  • V. P. Zhukov
  • M. A. Korotin
  • E. V. Polyakov


The effect of doping of titanium dioxide with the anatase structure by boron, carbon, and nitrogen atoms on the magnetic and optical properties and the electronic spectrum of this compound has been investigated using the ab initio tight-binding linear muffin-tin orbital (TB-LMTO) band-structure method in the local spin density approximation explicitly including Coulomb correlations (LSDA + U) in combination with the semiempirical extended Hückel theory (EHT) method. The LSDA + U calculations of the electronic structure, the imaginary part of the dielectric function, the total magnetic moments, and the magnetic moments at the impurity atoms have been carried out. The diagrams of the molecular orbitals of the clusters Ti3 X (X = B, C, N) have been calculated and the pseudo-space images of the molecular orbitals of the clusters have been constructed. The effect of doping on the nature and origin of photocatalytic activity in the visible spectral range and the specific features of the generation of ferromagnetic interactions in doped anatase have been discussed based on the analysis of the obtained data. It has been shown that, in the sequence TiO2 − y N y → TiO2 − y C y → TiO2 − y B y (y = 1/16), the photocatalytic activity can increase with the generation of electronic excitations with the participation of impurity bands. The calculated magnetic moments for boron and nitrogen atoms are equal to 1 μB, whereas the impurity carbon atoms are nonmagnetic.


Boron Photocatalytic Activity Titanium Atom Impurity Band Local Spin Density Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Matsumoto, M. Murakami, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, K. Nakajima, T. Chikyow, and H. Koinuma, Appl. Surf. Sci. 189, 344 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    M. S. Park, S. K. Kwon, and B. I. Min, Physica B (Amsterdam) 328, 120 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    N. H. Hong, J. Sakai, W. Prellier, and A. Ruyter, Physica B (Amsterdam) 355, 295 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    N. H. Hong, J. Sakai, and A. Hassini, Appl. Phys. Lett. 84, 2602 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene, and T. Venkatesan, Phys. Rev. Lett. 91, 077205 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    L. M. Huang, A. L. Rosa, and R. Ahuja, Phys. Rev. B: Condens. Matter 74, 075206 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    J.-Y. Kim, J.-H. Park, B.-G. Park, H.-J. Noh, S.-J. Oh, J. S. Yang, D.-H. Kim, S. D. Bu, T.-W. Noh, H.-J. Lin, H.-H. Hsieh, and C. T. Chen, Phys. Rev. Lett. 90, 017401 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    L. A. Balagurov, E. A. Gan’shina, S. O. Klimonskii, S. P. Kobeleva, A. F. Orlov, N. S. Perov, and D. G. Yarkin, Kristallografiya 50(4), 740 (2005) [Crystallogr. Rep. 50 (4), 686 (2005)].Google Scholar
  9. 9.
    V. N. Krasil’nikov, A. P. Shtin, O. I. Gyrdasova, E. V. Polyakov, L. Yu. Buldakova, M. Yu. Yanchenko, V. M. Zainullina, and V. P. Zhukov, Zh. Neorg. Khim. 55(8), 1258 (2010) [Russ. J. Inorg. Chem. 55 (8), 1184 (2010)].Google Scholar
  10. 10.
    V. M. Zainullina, V. P. Zhukov, V. N. Krasil’nikov, M. Yu. Yanchenko, L. Yu. Buldakova, and E. V. Polyakov, Fiz. Tverd. Tela (St. Petersburg) 52(2), 253 (2010) [Phys. Solid State 52 (2), 271 (2010)].Google Scholar
  11. 11.
    H. Tang, H. Berger, P. E. Schnid, F. Levy, and G. Burri, Solid State Commun. 87, 847 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    T. Story, R. R. Gałazka, R. B. Frankel, and P. A. Wolff, Phys. Rev. Lett. 56, 777 (1986); P. Łazarczyk, T. Story, M. Arciszewska, and R. R. Gałazka, J. Magn. Magn. Mater 169, 151 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B: Condens. Matter 63, 195205 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).ADSCrossRefGoogle Scholar
  15. 15.
    Z. Wilamowski, Acta Phys. Pol., A 77, 133 (1990).Google Scholar
  16. 16.
    J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    V. M. Zainullina, M. A. Korotin, and V. P. Zhukov, Physica B (Amsterdam) 405, 2110 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    R. Janisch and N. A. Spaldin, Phys. Rev. B: Condens. Matter 73, 035201 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    V. I. Anisimov, M. A. Korotin, I. A. Nekrasov, A. S. Mylnikova, A. V. Lukoyanov, J. L. Wang, and Z. Zeng, J. Phys.: Condens. Matter 18, 1695 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Wang and D. J. Doren, Solid State Commun. 136, 142 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    X. Du, Q. Li, H. Su, and J. Yang, Phys. Rev. B: Condens. Matter 74, 233201 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    K. H. He, G. Zheng, G. Chen, T. Lü, M. Wan, and G. F. Ji, Solid State Commun. 144, 54 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett. 99, 127201 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    L. Shen, R. Q. Wu, H. Pan, G. W. Peng, M. Yang, Z. D. Sha, and Y. P. Feng, Phys. Rev. B: Condens. Matter 78, 073306–4 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    X. J. Ye, W. Zhong, M. H. Xu, X. S. Qi, C. T. Au, and Y. W. Du, Phys. Lett. A 373, 3684 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    I. S. Elfimov, S. Yunoki, and G. A. Sawatzky, Phys. Rev. Lett. 89, 216403 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    J. Osorio-Guillen, S. Lany, S. V. Barabash, and A. Zunger, Phys. Rev. Lett. 96, 107203 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature (London) 430, 630 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    C. Das Pemmaraju and S. Sanvito, Phys. Rev. Lett. 94, 217205 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Bay and Q. Chen, Phys. Status Solidi RRL 2, 25 (2008).CrossRefGoogle Scholar
  31. 31.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science (Washington) 293, 269 (2001).CrossRefGoogle Scholar
  32. 32.
    K. Yang, Y. Dai, and B. Huang, Phys. Rev. B: Condens. Matter 76, 195201 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    C. Di Valentin, G. Pacchioni, and A. Selloni, Phys. Rev. B: Condens. Matter 70, 085116 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    K. Yang, Y. Dai, B. Huang, and M.-H. Whangbo, J. Phys. Chem. C 113, 2624 (2009).CrossRefGoogle Scholar
  35. 35.
    C. Di Valentin, G. Pacchioni, and A. Selloni, Chem. Mater. 17, 6656 (2005).CrossRefGoogle Scholar
  36. 36.
    Q. K. Li, B. Wang, Y. Zheng, Q. Wang, and H. Wang, Phys. Status Solidi RRL 1, 217 (2007).CrossRefGoogle Scholar
  37. 37.
    X. F. Wang, X. S. Chen, H. B. Shu, R. B. Dong, Y. Huang, and W. Lu, Solid State Commun. 149, 1717 (2009).ADSCrossRefGoogle Scholar
  38. 38.
    J. G. Tao, L. X. Guan, J. S. Pan, C. H. A. Huan, L. Wang, J. L. Kuo, Z. Zhang, J. W. Chai, and S. J. Wang, Appl. Phys. Lett. 95, 062505 (2009).ADSCrossRefGoogle Scholar
  39. 39.
    Y. Bai and Q. Chen, Solid State Commun. 147, 169 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    E. Finazzi, C. Di Valentin, and G. Pacchioni, J. Phys. Chem. C 113(1), 220 (2009).CrossRefGoogle Scholar
  41. 41.
    M. Batzill, E. H. Morales, and U. Diebold, Phys. Rev. Lett. 96, 026103 (2006).ADSCrossRefGoogle Scholar
  42. 42.
    T. Lindgren, J. M. Mwabora, E. Avendaño, J. Jonsson, A. Hoel, C.-G. Granqvist, and S.-E. Lindquist, J. Phys. Chem. B 107, 5709 (2003).CrossRefGoogle Scholar
  43. 43.
    V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).ADSCrossRefGoogle Scholar
  44. 44.
    Y. Matsumoto, M. Murakami, T. Shono, T. Hasegewa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science (Washington) 291, 854 (2001).ADSCrossRefGoogle Scholar
  45. 45.
    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).ADSCrossRefGoogle Scholar
  46. 46.
    R. Hoffmann and W. N. Lipscomb, J. Chem. Phys. 36, 2179 (1962).ADSCrossRefGoogle Scholar
  47. 47.
    C. J. Howard, T. M. Sabina, and F. Dickson, Acta Crystallogr., Sect. B 47, 462 (1991).CrossRefGoogle Scholar
  48. 48.
  49. 49.
    F. Aryasetiawan and O. Gunnarsson, Phys. Rev. B: Condens. Matter 49, 7219 (1994).ADSCrossRefGoogle Scholar
  50. 50.
    V. P. Zhukov, F. Aryasetiawan, E. V. Chulkov, I. G. de Gurtubay, and P. M. Echenique, Phys. Rev. B: Condens. Matter 64, 195122 (2001).ADSCrossRefGoogle Scholar
  51. 51.
    R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, and F. Levy, J. Appl. Phys. 75, 2945 (1994).ADSCrossRefGoogle Scholar
  52. 52.
    S. U. M. Khan, M. Al Shahry, and W. B. Ingler, Science (Washington) 297, 2243 (2002).ADSCrossRefGoogle Scholar
  53. 53.
    S. Sakthive, Angew. Chem., Int. Ed. 42, 4908 (2003).CrossRefGoogle Scholar
  54. 54.
    H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys. Chem. B 107, 5483 (2003).CrossRefGoogle Scholar
  55. 55.
    S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M. S. Tikhov, D. S. Wright, and R. M. Lambert, J. Am. Chem. Soc. 129, 13790 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. M. Zainullina
    • 1
    Email author
  • V. P. Zhukov
    • 1
  • M. A. Korotin
    • 2
  • E. V. Polyakov
    • 1
  1. 1.Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations