Physics of the Solid State

, Volume 53, Issue 4, pp 758–762 | Cite as

Simulation of crack growth during fracture of heterogeneous materials

  • V. L. HilarovEmail author
Mechanical Properties, Physics of Strength, and Plasticity


A cellular automaton model for describing the fracture of mechanically loaded heterogeneous materials has been constructed. Two extreme scenarios of the fracture process have been revealed, i.e., the dispersion (percolation) scenario, according to which defects accumulate uniformly throughout the volume of the material, and the correlated scenario (growth of predominantly a single source), which have been observed during the fracture of real materials. It has been shown that, in the case of the correlated fracture, a crack grows through the mechanism of ejection of double kinks of its front. In the intermediate case, the process occurs according to both scenarios: first, the slow accumulating (percolation) fracture and, then, the rapid correlated fracture; by the time the latter process begins, a self-organized critical state with a power-law size distribution of cracks typical of it has been formed.


Stress Relaxation Cellular Automaton Cellular Automaton Model Correlate Fracture Crack Growth Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. P. Kurdyumov, G. G. Malinetskii, A. B. Potapov, and A. A. Samarskii, in Computers and Nonlinear Phenomena, Ed. by A. A. Samarskii (Nauka Moscow, 1988), p. 5.Google Scholar
  2. 2.
    S. Wolfram, A New Kind of Science (Wolfram Media, Champaign, Illinois, United States, 2002).zbMATHGoogle Scholar
  3. 3.
    S. Ya. Berkovich, Cellular Automaton as a Model of Reality: Search for New Representations of Physical and Informational Processes (Moscow State University, Moscow, 1993) [in Russian].Google Scholar
  4. 4.
    E. E. Damaskinskaya and N. G. Tomilin, Fiz. Tverd. Tela (Leningrad) 33(1), 278 (1991) [Sov. Phys. Solid State 33 (1), 160 (1991)].Google Scholar
  5. 5.
    S. Nishiuma and S. Miyazima, Physica A (Amsterdam) 278(3–4), 295 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    D. V. Alekseev and G. A. Kazunina, Fiz. Tverd. Tela (St. Petersburg) 48(2), 255 (2006) [Phys. Solid State 48 (2), 272 (2006)].Google Scholar
  7. 7.
    S. G. Psakh'e, S. Yu. Korostelev, A. Yu. Smolin, A. I. Dmitriev, E. V. Shil'ko, D. D. Moiseenko, E. M. Tatarintsev, and S. V. Alekseev, Fiz. Mezomekh. 1, 95 (1998).Google Scholar
  8. 8.
    S. G. Psakh'e, G. P. Ostermaier, A. I. Dmitriev, E. V. Shil'ko, A. Yu. Smolin, and S. Yu. Korostelev, Fiz. Mezomekh. 3, 5 (2000).Google Scholar
  9. 9.
    V. L. Gilyarov, Fiz. Tverd. Tela (St. Petersburg) 36(8), 2247 (1994) [Phys. Solid State 36 (8), 1224 (1994)].Google Scholar
  10. 10.
    V. L. Hilarov, Fiz. Tverd. Tela (St. Petersburg) 47(5), 808 (2005) [Phys. Solid State 47 (5), 832 (2005)].Google Scholar
  11. 11.
    D. L. Turcotte, Rep. Prog. Phys. 62, 1377 (1999).CrossRefADSGoogle Scholar
  12. 12.
    J. V. Andersen, D. Sornette, and K.-T. Leung, Phys. Rev. Lett. 78, 2140 (1997).CrossRefADSGoogle Scholar
  13. 13.
    A. V. Podlazov, Preprint No. 35, IPM (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 2009).Google Scholar
  14. 14.
    V. R. Regel', A. I. Slutsker, and E. E. Tomashevskii, The Kinetic Nature of the Strength of Solids (Nauka, Moscow, 1974) [in Russian].Google Scholar
  15. 15.
    H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods: Applications to Physical Systems (Addison-Wesley, Boston, Massachusetts, United States, 1986; Mir, Moscow, 1990).Google Scholar
  16. 16.
    D. A. Lockner, J. D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin, Nature (London) 350, 39 (1991).CrossRefADSGoogle Scholar
  17. 17.
    A. N. Orlov, Introduction to the Theory of Defects in Crystals (Vysshaya Shkola, Moscow, 1983) [in Russian].Google Scholar
  18. 18.
    V. I. Betekhtin, V. L. Gilyarov, A. G. Kadomtsev, V. E. Korsukov, M. M. Korsukova, and B. A. Obidov, Izv. Akad. Nauk, Ser. Fiz. 73(10), 1507 (2009) [Bull. Russ. Acad. Sci.: Phys. 73 (10), 1419 (2009)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations