Advertisement

Physics of the Solid State

, Volume 53, Issue 4, pp 804–809 | Cite as

Role of surface plasmon polaritons in anomalous transmission of an electromagnetic wave through two arrays with subwavelength slits

  • V. E. BabichevaEmail author
  • Yu. E. Lozovik
Optical Properties

Abstract

The anomalously large transmission of an electromagnetic wave through structures consisting of two periodic arrays of subwavelength slits in films has been investigated. The conditions ensuring zero transmittance of this system have been determined. The role of surface plasmon polaritons in transmission anomalies has been analyzed. An analysis of the systems consisting of three arrays of slits has revealed specific features of the transmittance that are independent of the number of slits. It has been demonstrated that, at a wavelength corresponding to the excitation of a surface plasmon polariton in the gap between two periodic arrays of subwavelength slits, the transmittance is zero (i.e., transmission is suppressed). The investigation has been carried out using numerical simulations with the Fourier modal method.

Keywords

Slit Width Surface Plasmon Polaritons Transverse Displacement Transmittance Peak Periodic Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).CrossRefADSGoogle Scholar
  2. 2.
    F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82(1), 729 (2010).CrossRefADSGoogle Scholar
  3. 3.
    A. Moreau, C. Lafarge, N. Laurent, K. Edee, and G. Granet, J. Opt. A: Pure Appl. Opt. 9(2), 165 (2007).CrossRefADSGoogle Scholar
  4. 4.
    V. E. Babicheva and Yu. E. Lozovik, Opt. Quantum Electron. 41(4), 299 (2009).CrossRefGoogle Scholar
  5. 5.
    Z. B. Li, Y. H. Yang, X. T. Kong, W. Y. Zhou, and J. G. Tian, J. Opt. A: Pure Appl. Opt. 11(10), 105002, 1 (2009).CrossRefADSGoogle Scholar
  6. 6.
    Q. Cao and Ph. Lalanne, Phys. Rev. Lett. 88, 057403 (2002).CrossRefADSGoogle Scholar
  7. 7.
    C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, Appl. Phys. Lett. 91, 111 111 (2007).Google Scholar
  8. 8.
    C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, Phys. Rev. B: Condens. Matter 78, 075406 (2008).CrossRefADSGoogle Scholar
  9. 9.
    X. Ni, Z. Liu, F. Gu, M. G. Pacheco, J. Borneman, and A. V. Kildishev, “PhotonicsSHA-2D: Modeling of Single-Period Multilayer Optical Gratings and Metamaterials,” 10254/nanoHUB-r6977.9 (2009).Google Scholar
  10. 10.
    P. B. Johnson and R. W. Christy, Phys. Rev. B: Solid State 6, 4370 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).CrossRefADSGoogle Scholar
  12. 12.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  2. 2.Institute for SpectroscopyRussian Academy of SciencesTroitsk, Moscow regionRussia

Personalised recommendations