Physics of the Solid State

, Volume 53, Issue 2, pp 320–322 | Cite as

Giant magnetoresistance of granular microwires: Spin-dependent scattering in integranular spacers

  • A. B. Granovsky
  • M. Ilyn
  • A. Zhukov
  • V. Zhukova
  • J. Gonzalez
Magnetism

Abstract

The anomalous behavior of magnetoresistance has been revealed in a number of granular microwires. In contrast to the giant magnetoresistance of granular alloys, which is associated with the spin-dependent scattering in the bulk of grains and at their surface, is linear in the square of the magnetization, and decreases with an increase in temperature, the magnetoresistance, for example, in Co10Cu90 microwires is negative, increases with an increase in temperature below the Curie temperature, and does not reach saturation in the field dependence in the high-field range. A simple mechanism of negative giant magnetoresistance due to scattering of spin-polarized charge carriers by impurity magnetic moments localized in the nonmagnetic intergranular spacers has been proposed taking into account that a considerable part of magnetic ions in microwires exhibiting this behavior is dissolved in the intergranular spacers. It has been shown that the corresponding contribution to magnetoresistance can reach 10–20%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. T. Parker, A. Hutten, and G. Thomas, Phys. Rev. Lett. 68, 3745 (1992).CrossRefADSGoogle Scholar
  2. 2.
    J. Q. Xiao, J. S. Jiang, and C. L. Chien, Phys. Rev. Lett. 68, 3749 (1992).CrossRefADSGoogle Scholar
  3. 3.
    S. Zhang and P. M. Levy, J. Appl. Phys. 73, 5315 (1993).CrossRefADSGoogle Scholar
  4. 4.
    E. F. Ferari, F. C. S. da Silva, and M. Knobel, Phys. Rev. B: Condens. Matter 59, 8412 (1999).CrossRefADSGoogle Scholar
  5. 5.
    J. A. De Toro, J. P. Andres, J. A. Gonzalez, J. P. Goff, A. J. Barbero, and J. M. Riveiro, Phys. Rev. B: Condens. Matter 70, 22412 (2004).Google Scholar
  6. 6.
    A. Zhukov, J. Gonzalez, and V. Zhukova, J. Magn. Magn. Mater. 294, 165 (2005).CrossRefADSGoogle Scholar
  7. 7.
    A. Zhukov, C. Garcia, J. J. Del Val, J. Gonzalez, M. Knobel, D. Serates, D. Baldomir, and V. Zhukova, J. Phys.: Condens. Matter 21, 035301 (2009).CrossRefADSGoogle Scholar
  8. 8.
    M. T. Beal-Monod and R. A. Weiner, Phys. Rev. 170, 552 (1968).CrossRefADSGoogle Scholar
  9. 9.
    A. V. Vedyaev, A. B. Granovskii, and O. A. Kotel’nikova, Kinetic Phenomena in Disordered Ferromagnetic Alloys (Moscow State University, Moscow, 1992) [in Russian].Google Scholar
  10. 10.
    A. V. Vedyaev and A. B. Granovskii, Fiz. Met. Metalloved. 63, 1076 (1987).Google Scholar
  11. 11.
    W. H. Kettler and M. Rosenberg, Phys. Rev. B: Condens. Matter 39, 12142 (1989).CrossRefADSGoogle Scholar
  12. 12.
    M. Ilyn, A. Granovsky, V. Zhukova, J. Gonzalez, and A. Zhukov, in Book of Abstracts of the International Workshop on Magnetic Wires, Bodrum, Turkey, July 8–9, 2010 (Bodrum, 2010), p. 13.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. B. Granovsky
    • 1
  • M. Ilyn
    • 2
  • A. Zhukov
    • 2
  • V. Zhukova
    • 2
  • J. Gonzalez
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (University of the Basque Country)San Sebastian, Basque CountrySpain

Personalised recommendations