Advertisement

Physics of the Solid State

, Volume 53, Issue 1, pp 215–220 | Cite as

Specific features of the stone-wales transformation in the C20 and C36 fullerenes

  • A. I. Podlivaev
  • K. P. Katin
  • D. A. Lobanov
  • L. A. Openov
Fullerenes

Abstract

The initial stage of the defect formation in the C20 and C36 fullerenes has been investigated by the ab initio method and in terms of tight-binding models. A comparison with the Stone-Wales transformation in the C60 fullerene has revealed the presence of two independent stages in this process, the first of which is an “incomplete” Stone-Wales transformation. At this stage, the C20 and C36 fullerenes transform into metastable defect configurations with two adjacent “windows” on their surface, whereas a similar configuration of the C60 fullerene is unstable and corresponds to a saddle stationary point of the potential energy of the cluster. A new mechanism of plastic deformation due to the Stone-Wales transformation has been predicted for the (C36) n fullerites.

Keywords

Fullerene Defect Formation Reaction Coordinate Tight Binding Model Adjacent Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. W. Kroto, J. P. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smallev, Nature (London) 318, 162 (1985).CrossRefADSGoogle Scholar
  2. 2.
    H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Worth, L. T. Scott, M. Gelmont, D. Olevano, and B. von Issendorff, Nature (London) 407, 60 (2000).CrossRefADSGoogle Scholar
  3. 3.
    Yu. E. Lozovik and A. M. Popov, Usp. Fiz. Nauk 167(7), 751 (1997) [Phys.—Usp. 40 (7), 717 (1997)].CrossRefGoogle Scholar
  4. 4.
    A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).CrossRefADSGoogle Scholar
  5. 5.
    I. V. Davydov, A. I. Podlivaev, and L. A. Openov, Fiz. Tverd. Tela (St. Petersburg) 47(4), 751 (2005) [Phys. Solid State 47 (4), 778 (2005)].Google Scholar
  6. 6.
    L. A. Openov and A. I. Podlivaev, Pis’ma Zh. Eksp. Teor. Fiz. 84(2), 73 (2006) [JETP Lett. 84 (2), 68 (2006)].Google Scholar
  7. 7.
    C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys.: Condens. Matter 4, 6047 (1992).CrossRefADSGoogle Scholar
  8. 8.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).CrossRefADSGoogle Scholar
  9. 9.
    M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Fiz. Tverd. Tela (St. Petersburg) 51(3), 609 (2009) [Phys. Solid State 51 (3), 645 (2009)].Google Scholar
  10. 10.
    V. F. Elesin, A. I. Podlivaev, and L. A. Openov, Phys. Low-Dimens. Struct. 11, 91 (2000).Google Scholar
  11. 11.
    Y. Kumeda and D. J. Wales, Chem. Phys. Lett. 374, 125 (2003).CrossRefADSGoogle Scholar
  12. 12.
    H. F. Bettinger, B. I. Yakobson, and G. E. Scuseria, J. Am. Chem. Soc. 125, 5572 (2003).CrossRefGoogle Scholar
  13. 13.
    A. I. Podlivaev and L. A. Openov, Pis’ma Zh. Eksp. Teor. Fiz. 81(10), 656 (2005) [JETP Lett. 81 (10), 533 (2005)].Google Scholar
  14. 14.
    R. L. Murry, D. L. Strout, G. K. Odom, and G. E. Scueria, Nature (London) 366, 665 (1993).CrossRefADSGoogle Scholar
  15. 15.
    R. L. Murry, D. L. Strout, and G. E. Scuseria, Int. J. Mass Spectrom. Ion Processes 138, 113 (1994).CrossRefADSGoogle Scholar
  16. 16.
    Y. Jin and C. Hao, J. Phys. Chem. A 109, 2875 (2005).CrossRefGoogle Scholar
  17. 17.
    C. Piskoti, J. Yanger, and A. Zettl, Nature (London) 393, 771 (1998).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. I. Podlivaev
    • 1
  • K. P. Katin
    • 1
  • D. A. Lobanov
    • 1
  • L. A. Openov
    • 1
  1. 1.National Research Nuclear University “MEPhI,”MoscowRussia

Personalised recommendations