Advertisement

Physics of the Solid State

, Volume 53, Issue 1, pp 29–34 | Cite as

Energy filtration of charge carriers in a nanostructured material based on bismuth telluride

  • L. P. BulatEmail author
  • I. A. Drabkin
  • V. V. Karataev
  • V. B. Osvenskii
  • Yu. N. Parkhomenko
  • D. A. Pshenai-Severin
  • G. I. Pivovarov
  • N. Yu. Tabachkova
Semiconductors

Abstract

The dependences of the electrical conductivity and thermopower on the size of grains in a nanocrystalline material based on Bi2Te3-Sb2Te3 solid solutions of the p type have been investigated theoretically and experimentally. The relaxation time in the case of hole scattering by nanograin boundaries in an isotropic polycrystal has been calculated taking into account the energy dependence of the probability of tunneling of charge carriers and the dependence of the scattering intensity on the nanograin size L n . A decrease in the probability of boundary scattering with an increase in the energy of charge carriers leads to an increase in the thermopower. The dependences of the thermopower and electrical conductivity on the nanograin size, which have been obtained taking into account the boundary scattering and scattering by acoustic phonons, are in good agreement with experimental data. For the material under consideration, the thermopower coefficient increases by 10–20% compared to the initial solid solution at L n = 20–30 nm. This can lead to an increase in the thermoelectric figure of merit by 20–40%, provided that the decrease in the electrical conductivity and the decrease in the lattice thermal conductivity compensate each other. Despite the absence of a complete compensation, it has been possible to increase the thermoelectric figure of merit for the samples under investigation to ZT = 1.10–1.12.

Keywords

Charge Carrier Proportional Integral Derivative Controller Lattice Thermal Conductivity Free Path Length Bismuth Telluride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Zh. Ren, Science (Washington) 320, 634 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    L. P. Bulat, V. B. Osvensky, G. I. Pivovarov, A. A. Snarskii, E. V. Tatyanin, and A. A. O. Tay, in Proceedings of the Sixth European Conference on Thermoelectrics (ECT2008), Paris, France, July 2–4, 2008 (Paris, 2008), p. I2–1.Google Scholar
  3. 3.
    L. P. Bulat, I. A. Drabkin, V. B. Osvenskii, G. I. Pivovarov, A. A. Snarskii, and E. V. Tat’yanin, Thermoelectrics and Their Application (Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg, 2008), p. 39 [in Russian].Google Scholar
  4. 4.
    L. P. Bulat, V. T. Bublik, I. A. Drabkin, V. V. Karataev, V. B. Osvenskii, G. I. Pivovarov, D. A. Pshenai-Severin, E. V. Tat’yanin, and N. Yu. Tabachkova, Termoelektrichestvo, No. 3, 70 (2009).Google Scholar
  5. 5.
    L. P. Bulat and D. A. Pshenai-Severin, Fiz. Tverd. Tela (St. Petersburg) 52(3), 452 (2010) [Phys. Solid State 52 (3), 485 (2010)].Google Scholar
  6. 6.
    L. P. Bulat, I. A. Drabkin, V. V. Karataev, V. B. Osvenskii, and D. A. Pshenai-Severin, Fiz. Tverd. Tela (St. Petersburg) 52(9), 1712 (2010) [Phys. Solid State 52 (9), 1836 (2010)].Google Scholar
  7. 7.
    B. Moyzhes and V. Nemchinsky, in Proceedings of the 11th International Conference on Thermoelectrics (ICT XI), University of Texas at Arlington, Arlington, Texas, United States, October 7–9, 1992, Ed. by K. R. Rao (University of Texas at Arlington, Arlington, 1992), p. 232.Google Scholar
  8. 8.
    Yu. I. Ravich, in CRC Handbook of Thermoelectrics, Ed. by D. M. Rowe (CRC Press, New York, 1995), p. 67.Google Scholar
  9. 9.
    B. Moyzhex and V. Nemchinsky, Appl. Phys. Lett. 73, 1895 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Zh. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. (Weinheim) 19, 1043 (2007).CrossRefGoogle Scholar
  11. 11.
    Sh. B. A. Atakulov and A. N. Shamsiddinov, Solid State Commun. 56, 215 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas, Phys. Rev. B: Condens. Matter 79, 205302 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    A. F. Mayadas and M. Shatzkes, Appl. Phys. Lett. 14, 345 (1969).ADSCrossRefGoogle Scholar
  14. 14.
    A. F. Mayadas and M. Shatzkes, Phys. Rev. B: Solid State 1, 1382 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    V. A. Gridchin, V. M. Lyubimskii, and A. G. Moiseev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39(2), 208 (2005) [Semiconductors 39 (2), 192 (2005)].Google Scholar
  16. 16.
    A. N. Ivanov, E. V. Shelikhov, and E. N. Kuz’mina, Zavod. Lab., Diagn. Mater. 70(11), 29 (2004).Google Scholar
  17. 17.
    B. M. Goltsman, V. A. Kudinov, and I. A. Smirnov, Thermoelectric Semiconductor Materials Based on Bi 2Te3 (Nauka, Moscow, 1972; Army Foreign Science and Technology Center, Charlottesville, Virginia, United States, 1973).Google Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Butterworth-Heinemann, Oxford, 1991).Google Scholar
  19. 19.
    J. R. Drabble and R. Wolfe, Proc. Phys. Soc., London, Sect. B 69, 1101 (1956).ADSCrossRefGoogle Scholar
  20. 20.
    L. N. Luk’yanova, V. A. Kutasov, P. P. Konstantinov, and V. V. Popov, Fiz. Tverd. Tela (St. Petersburg) 52(8), 1492 (2010) [Phys. Solid State 52 (8), 1599 (2010)].Google Scholar
  21. 21.
    M. Stordeur, M. Stoelzer, H. Sobotta, and V. Riede, Phys. Status Solidi B 150, 165 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    B. M. Askerov, Electron Transport Phenomena in Semiconductors (Nauka, Moscow, 1985; World Scientific, Singapore, 1994).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. P. Bulat
    • 1
    Email author
  • I. A. Drabkin
    • 2
  • V. V. Karataev
    • 2
  • V. B. Osvenskii
    • 2
  • Yu. N. Parkhomenko
    • 2
  • D. A. Pshenai-Severin
    • 3
  • G. I. Pivovarov
    • 4
  • N. Yu. Tabachkova
    • 5
  1. 1.St. Petersburg State University of Refrigeration and Food EngineeringSt. PetersburgRussia
  2. 2.Federal State Research and Design Institute of Rare Metal Industry “Giredmet,”MoscowRussia
  3. 3.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Federal State Institution “Technological Institute for Superhard and Novel Carbon Materials,”Troitsk, Moscow oblastRussia
  5. 5.National University of Science and Technology “MISIS,”MoscowRussia

Personalised recommendations