Advertisement

Physics of the Solid State

, Volume 52, Issue 12, pp 2589–2595 | Cite as

Electronic structure and adhesion on metal-aluminum-oxide interfaces

  • S. E. KulkovaEmail author
  • S. V. Eremeev
  • S. Hocker
  • S. Schmauder
Low-Dimensional Systems and Surface Physics

Abstract

This paper reports on the results of the systematic analysis of the atomic and electronic structure of the Me/α-Al2O3(0001) interfaces for two series of isoelectronic metals (Me = Cu, Ag, Au and Ni, Pd, Pt), depending on the termination of the oxide substrate and the configuration of oxide films. The calculations have been performed by the pseudopotential method in the plane-wave basis set. The adhesion energy of metal films has been calculated depending on the cleavage plane. It has been shown that the adhesion energy is maximum at the oxygen interface, which is caused by the ion component in chemical bonding at this interface. The aluminum and aluminum-enriched interfaces are characterized by the metallic type of bonding. The local densities of states and the charge distribution near the interface have been analyzed. It has been demonstrated that oxygen vacancies at the interface substantially weaken the adhesion due to the partial breaking of Me-O bonds.

Keywords

Oxygen Vacancy Local Density Metal Layer Metal Film Copper Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. T. Klomp, in Surfaces and Interfaces of Ceramic Materials, Ed. by L. C. Dufour (Kluwer, Norwell, Massachusetts, United States, 1989).Google Scholar
  2. 2.
    M. W. Finnis, J. Phys.: Condens. Matter 8, 5811 (1996).CrossRefADSGoogle Scholar
  3. 3.
    C. Kruse, M. W. Finnis, J. S. Lin, M. C. Paine, V. Milman, A. de Vita, and J. Gilan, Philos. Mag. 73, 377 (1996).CrossRefADSGoogle Scholar
  4. 4.
    G. L. Zhao, J. R. Smith, J. Raynolds, and D. J. Srolovitz, Interface Sci. 3, 289 (1996).CrossRefGoogle Scholar
  5. 5.
    I. Batirev, A. Alavi, and M. Finnis, Phys. Rev. Lett. 82, 1510 (1999).CrossRefADSGoogle Scholar
  6. 6.
    W. Zhang and J. R. Smith, Phys. Rev. B: Condens. Matter 61, 16883 (2000).ADSGoogle Scholar
  7. 7.
    W. Zhang and J. R. Smith, Phys. Rev. Lett. 85, 3225 (2000).CrossRefADSGoogle Scholar
  8. 8.
    I. Batyrev and L. Kleinman, Phys. Rev. B: Condens. Matter 64, 033410 (2001).ADSGoogle Scholar
  9. 9.
    Y. F. Zhukovskii, E. A. Kotomin, B. Herschend, K. Hermansson, and P. W. M. Jacobs, Surf. Sci. 513, 343 (2002).CrossRefADSGoogle Scholar
  10. 10.
    W. Zhang, J. R. Smith, and A. G. Evans, Acta Mater. 50, 3816 (2002).Google Scholar
  11. 11.
    J. Feng, W. Zhang, and W. Jiang, Phys. Rev. B: Condens. Matter 72, 115423 (2005).ADSGoogle Scholar
  12. 12.
    S. V. Dmitriev, N. Yoshikava, M. Kohyama, S. Tanaka, R. Yang, and Yu. Kagawa, Acta Mater. 52, 1959 (2004).CrossRefGoogle Scholar
  13. 13.
    S. V. Eremeev, L. Yu. Nemirovich-Danchenko, and S. E. Kul’kova, Fiz. Tverd. Tela (St. Petersburg) 50(3), 523 (2008) [Phys. Solid State 50 (3), 543 (2008)].Google Scholar
  14. 14.
    G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993).ADSGoogle Scholar
  15. 15.
    G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 49, 14251 (1994).ADSGoogle Scholar
  16. 16.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  17. 17.
    G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).ADSGoogle Scholar
  18. 18.
    J. P. Perdew, Phys. Rev. B: Condens. Matter 46, 6671 (1992).ADSGoogle Scholar
  19. 19.
    C. Verdozzi, D. R. Jennison, P. A. Shulz, and M. P. Sears, Phys. Rev. Lett. 82, 799 (1999).CrossRefADSGoogle Scholar
  20. 20.
    D. Chatain, L. Coudurier, and N. Eustathopoulos, Phys. Rev. Appl. 78, 439 (1988).Google Scholar
  21. 21.
    J. G. Li, L. Coudurier, and N. Eustathopoulos, Mater. Sci. 24, 1109 (1989).CrossRefADSGoogle Scholar
  22. 22.
    A. Bogicevic and D. R. Jennison, Phys. Rev. Lett. 82, 4050 (1999).CrossRefADSGoogle Scholar
  23. 23.
    D. Chatain, F. Chabert, V. Ghetta, and J. Fouletier, J. Am. Ceram. Soc. 77, 197 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. E. Kulkova
    • 1
    • 2
    Email author
  • S. V. Eremeev
    • 1
    • 2
  • S. Hocker
    • 3
  • S. Schmauder
    • 3
  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.Institute of Materials Testing, Materials Science and Strength of MaterialsUniversity of StuttgartStuttgartGermany

Personalised recommendations