Physics of the Solid State

, Volume 52, Issue 9, pp 1919–1924 | Cite as

Luminescence of aluminoborosilicate glasses doped with Gd3+ ions

  • E. V. Mal’chukova
  • A. I. Nepomnyashchikh
  • B. Boizot
  • T. S. Shamirzaev
  • G. Petite
Optical Properties


The two-photon absorption that leads to the ultraviolet upconversion luminescence in the SiO2-Al2O3-B2O3-Na2O3-Zr2O: Cd3+ glass has been investigated. The inference has been made that no photon cascade emission takes place under excitation by monochromatic light corresponding to the maximum of the absorption band of the Cd3+ ion (204 nm). The mechanisms of concentration quenching and energy transfer between Cd3+ ions and optically active defects of the aluminoborosilicate glass have been discussed.


Active Defect Photon Absorption Upconversion Luminescence High Excited State Upconversion Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Potapov, P. A. Rodnyĭ, S. B. Mikhrin, and I. R. Magunov, Fiz. Tverd. Tela (St. Petersburg) 47(8), 1386 (2005) [Phys. Solid State 47 (8), 1436 (2005)].Google Scholar
  2. 2.
    F. Auzel, Chem. Rev. 104, 139 (2004).CrossRefGoogle Scholar
  3. 3.
    F. W. Ostermayer and L. G. Van Uitert, Phys. Rev. B: Solid State 1, 4208 (1970).ADSGoogle Scholar
  4. 4.
    M. A. Noginov, P. Venkateswarlu, and M. Mahadi, J. Opt. Soc. Am. B 13, 735 (1996).CrossRefADSGoogle Scholar
  5. 5.
    R. T. Wegh, E. V. D. van Loef, and A. Meijerink, J. Lumin. 90, 111 (2000).CrossRefGoogle Scholar
  6. 6.
    G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience, New York, 1968).Google Scholar
  7. 7.
    W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, Argonne Natl. Lab. [Tech. Rep.], No. ANL-88-8 (1988).Google Scholar
  8. 8.
    H. Kondo, T. Hirai, and S. Hashimoto, J. Lumin. 102, 727 (2003).CrossRefGoogle Scholar
  9. 9.
    E. Malchukova, B. Boizot, D. Ghaleb, and G. Petite, J. Non-Cryst. Solids 352, 297 (2006).CrossRefADSGoogle Scholar
  10. 10.
    E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, J. Non-Cryst. Solids 353, 2397 (2007).CrossRefADSGoogle Scholar
  11. 11.
    Z. Yang, J. H. Lin, M. Z. Su, Y. Tao, and W. Wang, J. Alloys Compd. 308, 94 (2000).CrossRefGoogle Scholar
  12. 12.
    D. Di Martino, A. Krasnikov, M. Nikl, K. Nitsch, A. Vedda, and S. Zazubovich, Phys. Status Solidi A 201, R38 (2004).CrossRefADSGoogle Scholar
  13. 13.
    Z. Tian, H. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, J. Phys. Chem. C 112, 12524 (2008).CrossRefGoogle Scholar
  14. 14.
    L. Skuja, J. Non-Cryst. Solids 239, 16 (1998).CrossRefADSGoogle Scholar
  15. 15.
    R. T. Wegh, H. Donker, A. Meijerink, R. L. Lamminmaki, and J. Holsa, Phys. Rev. B: Condens. Matter 56, 13841 (1997).ADSGoogle Scholar
  16. 16.
    P. J. Deren, W. Strek, and J.-C. Krupa, Chem. Phys. Lett. 928, 217 (1998).CrossRefADSGoogle Scholar
  17. 17.
    A. J. Vries, M. F. de Hazekamp, and G. Blasse, J. Lumin. 42, 275 (1988).CrossRefGoogle Scholar
  18. 18.
    P. J. Alonso, V. M. Orera, R. Cases, R. Alcala, and V. D. Rodriguez, J. Lumin. 39, 275 (1988).CrossRefGoogle Scholar
  19. 19.
    R. Reisfeld, E. Greenberg, R. Velapoldi, and B. Barnett, J. Chem. Phys. 56, 1698 (1972).CrossRefADSGoogle Scholar
  20. 20.
    G. H. Dieke and H. M. Crosswhite, Appl. Opt. 2, 675 (1963).CrossRefADSGoogle Scholar
  21. 21.
    J. W. V. Verwey, G. F. Imbusch, and G. Blasse, J. Phys. Chem. Solids 50, 813 (1989).CrossRefADSGoogle Scholar
  22. 22.
    K. Binnemans, R. Van Deun, C. Goerller-Walrand, and J. L. Adam, J. Non-Cryst. Solids 238, 11 (1998).CrossRefADSGoogle Scholar
  23. 23.
    A. Kumar, D. K. Rai, and S. B. Rai, Solid State Commun. 117, 387 (2001).CrossRefADSGoogle Scholar
  24. 24.
    A. Kumar, D. K. Rai, and S. B. Rai, Spectrochim. Acta, Part A 57, 2587 (2001).CrossRefADSGoogle Scholar
  25. 25.
    J. Kliava, A. Malakhovskii, I. Edelman, A. Potseluyko, E. Patrakovskaja, S. Melnikova, T. Zarubina, G. Petrovskii, Y. Bruckental, and Y. Yeshurun, Phys. Rev. B: Condens. Matter 71, 104406 (2005).ADSGoogle Scholar
  26. 26.
    P. Yang, C. F. Song, M. K. Lu, J. Chang, Y. Z. Wang, Z. X. Yang, G. J. Zhou, Z. P. Ai, D. Xu, and D. L. Yuan, J. Solid State Chem. 160, 272 (2001).CrossRefADSGoogle Scholar
  27. 27.
    L. Brixner, M. Crawford, J.-L. Adam, and J. Lucas, C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers 309, 1541 (1989).Google Scholar
  28. 28.
    S. Agnello, R. Boscaino, F. La Mattina, S. Grandi, and A. Magistris, in Proceedings of the 2005 IEEE/LEOS Workshop, Eindhoven, The Netherlands, 2005, p. 422.Google Scholar
  29. 29.
    A. H. Edwards, in Defects in Glasses, Ed. by F. L. Galeener, D. L. Griscom, and M. J. Weber (Materials Research Society, Pittsburgh, PA, United States, 1986), p. 3.Google Scholar
  30. 30.
    T. Uchino, M. Takahashi, and T. Yoko, Phys. Rev. Lett. 86, 1777 (2001).CrossRefADSGoogle Scholar
  31. 31.
    B. Boizot, G. Petite, D. Ghaleb, and G. Calas, Nucl. Instum. Methods Phys. Res., Sect. B 141, 580 (1998).CrossRefADSGoogle Scholar
  32. 32.
    B. Boizot, G. Petite, D. Ghaleb, and G. Calas, J. Non-Cryst. Solids 283, 179 (2001).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • E. V. Mal’chukova
    • 1
    • 3
  • A. I. Nepomnyashchikh
    • 2
  • B. Boizot
    • 3
  • T. S. Shamirzaev
    • 4
  • G. Petite
    • 3
  1. 1.Irkutsk State UniversityIrkutskRussia
  2. 2.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  3. 3.Laboratoire des Solides IrradiésEcole PolytechniquePalaiseau CedexFrance
  4. 4.Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations