Physics of the Solid State

, Volume 52, Issue 8, pp 1768–1773 | Cite as

Dependence of the intrinsic line width of surface states on the wave vector: The Cu(111) and Ag(111) surfaces

Low-Dimensional Systems and Surface Physics

Abstract

The dependence of the intrinsic line width Γ of electron and hole states due to inelastic scattering on the wave vector k in the occupied surface state and the first image potential state on the Cu(111) and Ag(111) surfaces has been calculated using the GW approximation, which simulates the self-energy of the quasiparticles by the product of the Greens’s function and the dynamically screened Coulomb potential. Different contributions to the relaxation of electron and hole excitations have been analyzed. It has been demonstrated that, for both surfaces, the main channel of relaxation of holes in the occupied surface states is intraband scattering and that, for electrons in the image potential states, the interband transitions play a decisive role. A sharp decrease in the intrinsic line width of the hole state with an increase in k is caused by a decrease in the number of final states, whereas an increase in Γ of the image potential state is predominantly determined by an increase of its overlap with bulk states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Ho, J. Phys. Chem. 100, 13050 (1996).CrossRefGoogle Scholar
  2. 2.
    H. Nienhaus, Surf. Sci. Rep. 45, 1 (2002).CrossRefADSGoogle Scholar
  3. 3.
    R. Haight, Surf. Sci. Rep. 21, 275 (1995).CrossRefADSGoogle Scholar
  4. 4.
    P. Saalfrank, Chem. Rev. 106, 4116 (2006).CrossRefGoogle Scholar
  5. 5.
    E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sanchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, Chem. Rev. 106, 4160 (2006).CrossRefGoogle Scholar
  6. 6.
    M. Echenique, R. Berndt, E. V. Chulkov, T. Fauster, A. Goldmann, and U. Höfer, Surf. Sci. Rep. 52, 219 (2004).CrossRefGoogle Scholar
  7. 7.
    C. D. Lindstrom and X.-Y. Zhu, Chem. Rev. 106, 4281 (2006).CrossRefGoogle Scholar
  8. 8.
    E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Surf. Sci. 437, 330 (1999).CrossRefADSGoogle Scholar
  9. 9.
    E. V. Chulkov, I. Sarría, V. M. Silkin, J. M. Pitarke, and P. M. Echenique, Phys. Rev. Lett. 80, 4947 (1998).CrossRefADSGoogle Scholar
  10. 10.
    I. SarrÍa, J. Osma, E. V. Chulkov, J. M. Pitarke, and P. M. Echenique, Phys. Rev. B: Condens. Matter 60, 11795 (1999).ADSGoogle Scholar
  11. 11.
    J. Osma, I. Sarría, E. V. Chulkov, J. M. Pitarke, and P. M. Echenique, Phys. Rev. B: Condens. Matter 59, 10591 (1999).ADSGoogle Scholar
  12. 12.
    W. Berthold, U. Höfer, P. Feulner, E. V. Chulkov, J. M. Pitarke, and P. M. Echenique, Phys. Rev. Lett. 88, 056805 (2002).CrossRefADSGoogle Scholar
  13. 13.
    J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, and S. Crampin, Science (Washington) 288, 1399 (2000).CrossRefADSGoogle Scholar
  14. 14.
    S. Link, H. A. Dürr, G. Bihlmayer, S. Blügel, W. Eberhardt, E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Phys. Rev. B: Condens. Matter 63, 115420 (2001).ADSGoogle Scholar
  15. 15.
    L. Vitali, P. Wahl, M. A. Schneider, K. Kern, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Surf. Sci. 523, L47 (2003).CrossRefGoogle Scholar
  16. 16.
    E. V. Chulkov, V. M. Silkin, and M. Machado, Surf. Sci. 482–485, 693 (2001).CrossRefGoogle Scholar
  17. 17.
    G. Ferrini, C. Giannetti, D. Fausti, G. Galimberti, M. Peloi, G. Banfi, and F. Parmigiani, Phys. Rev. B: Condens. Matter 67, 235 407 (2003).Google Scholar
  18. 18.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics (Fizmatgiz, Moscow, 1962; Pergamon, Oxford, 1965).Google Scholar
  19. 19.
    L. Hedin and S. Lundqvist, Solid State Phys. 23, 1 (1969).CrossRefGoogle Scholar
  20. 20.
    I. A. Nechaev, V. P. Zhukov, and E. V. Chulkov, Fiz. Tverd. Tela (St. Petersburg) 49(10), 1729 (2007) [Phys. Solid State 49 (10), 1811 (2007)].Google Scholar
  21. 21.
    G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993).ADSGoogle Scholar
  22. 22.
    G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 49, 14251 (1994).ADSGoogle Scholar
  23. 23.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  24. 24.
    G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).ADSGoogle Scholar
  25. 25.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefADSGoogle Scholar
  26. 26.
    G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter 59, 1758 (1999).ADSGoogle Scholar
  27. 27.
    P. E. Blöchl, Phys. Rev. B: Condens. Matter 50, 17953 (1994).ADSGoogle Scholar
  28. 28.
    G. Hörmandinger, Phys. Rev. B: Condens. Matter 49,13 897 (1994).Google Scholar
  29. 29.
    M. Wolf, E. Knoesel, and T. Hertel, Phys. Rev. B: Condens. Matter 54, R5295 (1996).ADSGoogle Scholar
  30. 30.
    O. Jeandupeux, L. Burgi, A. Hirstein, H. Brune, and K. Kern, Phys. Rev. B: Condens. Matter 59, 15926 (1999).ADSGoogle Scholar
  31. 31.
    D. Straub and F. J. Himpsel, Phys. Rev. B: Condens. Matter 33, 2256 (1986).ADSGoogle Scholar
  32. 32.
    Th. Fauster and W. Steinmann, in Electromagnetic Waves: Recent Development in Research, Ed. by P. Halevi (Elsevier, Amsterdam, The Netherlands, 1995), Vol. 2, p. 350.Google Scholar
  33. 33.
    A. Eiguren, B. Hellsing, E. V. Chulkov, and P. M. Echenique, Phys. Rev. B: Condens. Matter 67, 235423 (2003).ADSGoogle Scholar
  34. 34.
    A. V. Chaplik, Zh. Éksp. Teor. Fiz. 60, 1845 (1971) [Sov. Phys. JETP 33, 997 (1971)].Google Scholar
  35. 35.
    J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).MATHCrossRefMathSciNetADSGoogle Scholar
  36. 36.
    E. Knoesel, A. Hotzel, and M. Wolf, J. Electron Spectrosc. Relat. Phenom. 88–91, 577 (1998).CrossRefGoogle Scholar
  37. 37.
    M. Weinelt, J. Phys.: Condens. Matter 14, R1099 (2002).CrossRefADSGoogle Scholar
  38. 38.
    R. L. Lingle, Jr., N.-H. Ge, R. E. Jordan, J. D. McNeill, and C. B. Harris, Chem. Phys. 205, 191 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. V. Eremeev
    • 1
    • 2
  • S. S. Tsirkin
    • 2
  • E. V. Chulkov
    • 3
    • 4
  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.Donostia International Physics Center (DIPC)Basque CountrySpain
  4. 4.Departamento de Física de Materiales and Centro de Física de Materiales (CFM) CSIC-Universidad del País Vasco/Euskal Herriko Unibertsitatea (University of the Basque Country), Facultad de Ciencias QuímicasUniversidad del País Vasco/Euskal Herriko Unibertsitatea (University of the Basque Country) Barrio Sarriena s/nSan Sebastián/Donostia, Basque CountrySpain

Personalised recommendations