Physics of the Solid State

, Volume 52, Issue 7, pp 1448–1462 | Cite as

Ground state and properties of ferroelectric superlattices based on crystals of the perovskite family

Magnetism and Ferroelectricity

Abstract

The crystal structure of the ground state of ten free-standing ferroelectric superlattices based on crystals with the perovskite structure (BaTiO3/SrTiO3, PbTiO3/SrTiO3, PbTiO3/PbZrO3, SrZrO3/SrTiO3, PbZrO3/BaZrO3, BaTiO3/BaZrO3, PbTiO3/BaTiO3, BaTiO3/CaTiO3, KNbO3/KTaO3, and KNbO3/NaNbO3) was calculated from first principles within the density functional theory taking into account criteria for stability of the structures with respect to acoustic and optical distortions. It was shown that the ground state in all the considered superlattices corresponds to the ferroelectric phase. It was found that the polarization vector has a tendency toward a tilt to the plane of the superlattice layers, which makes it possible to decrease the electrostatic and elastic energy in the superlattices consisting of materials with different ferroelectric properties. The importance of the inclusion of structural distortions due to unstable phonons at the Brillouin zone boundary, which, in a number of cases, lead to significant changes in ferroelectric and dielectric properties of the superlattices, was demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Lebedev, Fiz. Tverd. Tela (St. Petersburg) 51(2), 341 (2009) [Phys. Solid State 51 (2), 362 (2009)].Google Scholar
  2. 2.
    A. I. Lebedev, Fiz. Tverd. Tela (St. Petersburg) 51(4), 757 (2009) [Phys. Solid State 51 (4), 802 (2009)].Google Scholar
  3. 3.
    A. I. Lebedev, Fiz. Tverd. Tela (St. Petersburg) 51(11), 2190 (2009) [Phys. Solid State 51 (11), 2324 (2009)].Google Scholar
  4. 4.
    H. Tabata, H. Tanaka, and T. Kawai, Appl. Phys. Lett. 65, 1970 (1994).CrossRefADSGoogle Scholar
  5. 5.
    B. D. Qu, M. Evstigneev, D. J. Johnson, and R. H. Prince, Appl. Phys. Lett. 72, 1394 (1998).CrossRefADSGoogle Scholar
  6. 6.
    T. Zhao, Z.-H. Chen, F. Chen, W.-S. Shi, H.-B. Lu, and G.-Z. Yang, Phys. Rev. B: Condens. Matter 60, 1697 (1999).ADSGoogle Scholar
  7. 7.
    T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata, and T. Kawai, J. Appl. Phys. 91, 2290 (2002).CrossRefADSGoogle Scholar
  8. 8.
    A. Q. Jiang, J. F. Scott, H. Lu, and Z. Chen, J. Appl. Phys. 93, 1180 (2003).CrossRefADSGoogle Scholar
  9. 9.
    S. Rios, A. Ruediger, A. Q. Jiang, J. F. Scott, H. Lu, and Z. Chen, J. Phys.: Condens. Matter 15, L305 (2003).CrossRefADSGoogle Scholar
  10. 10.
    J. B. Neaton and K. M. Rabe, Appl. Phys. Lett. 82, 1586 (2003).CrossRefADSGoogle Scholar
  11. 11.
    L. Kim, D. Jung, J. Kim, Y. S. Kim, and J. Lee, Appl. Phys. Lett. 82, 2118 (2003).CrossRefADSGoogle Scholar
  12. 12.
    K. Johnston, X. Huang, J. B. Neaton, and K. M. Rabe, Phys. Rev. B: Condens. Matter 71, 100103 (2005).ADSGoogle Scholar
  13. 13.
    J. Lee, L. Kim, J. Kim, D. Jung, and U. V. Waghmare, J. Appl. Phys. 100, 051613 (2006).CrossRefADSGoogle Scholar
  14. 14.
    B. Strukov, S. Davitadze, V. Lemanov, S. Shulman, Y. Uesu, S. Asanuma, D. Schlom, and A. Soukiassian, Ferroelectrics 370, 57 (2008).CrossRefGoogle Scholar
  15. 15.
    T. Harigai, S.-M. Nam, H. Kakemoto, S. Wada, K. Saito, and T. Tsurumi, Thin Solid Films 509, 13 (2006).CrossRefADSGoogle Scholar
  16. 16.
    J. H. Lee, J. Yu, and U. V. Waghmare, J. Appl. Phys. 105, 016104 (2009).CrossRefADSGoogle Scholar
  17. 17.
    J. C. Jiang, X. Q. Pan, W. Tian, C. D. Theis, and D. G. Schlom, Appl. Phys. Lett. 74, 2851 (1999).CrossRefADSGoogle Scholar
  18. 18.
    M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. M. Rabe, and J.-M. Triscone, Phys. Rev. Lett. 95, 177601 (2005).CrossRefADSGoogle Scholar
  19. 19.
    Z. Zhu, B. Wang, H. Wang, Y. Zheng, and Q. K. Li, Solid-State Electron. 50, 1756 (2006).CrossRefADSGoogle Scholar
  20. 20.
    V. R. Cooper, K. Johnston, and K. M. Rabe, Phys. Rev. B: Condens. Matter 76, 020103 (2007).ADSGoogle Scholar
  21. 21.
    E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and P. Ghosez, Nature (London) 452, 732 (2008).CrossRefADSGoogle Scholar
  22. 22.
    H. Wu, A. Liu, L. Wu, and S. Du, Appl. Phys. Lett. 93, 242 909 (2008).Google Scholar
  23. 23.
    I. Kanno, S. Hayashi, R. Takayama, and T. Hirao, Appl. Phys. Lett. 68, 328 (1996).CrossRefADSGoogle Scholar
  24. 24.
    G. Sághi-Szabó, R. E. Cohen, and H. Krakauer, Phys. Rev. B: Condens. Matter 59, 12771 (1999).ADSGoogle Scholar
  25. 25.
    C. Bungaro and K. M. Rabe, Phys. Rev. B: Condens. Matter 65, 224 106 (2002).Google Scholar
  26. 26.
    Z. Wu and H. Krakauer, Phys. Rev. B: Condens. Matter 68, 014112 (2003).ADSGoogle Scholar
  27. 27.
    C. Bungaro and K. M. Rabe, Phys. Rev. B: Condens. Matter 69, 184101 (2004).ADSGoogle Scholar
  28. 28.
    T. Choi, J.-S. Kim, B. H. Park, and J. Lee, Integr. Ferroelectr. 68, 13 (2004).CrossRefGoogle Scholar
  29. 29.
    T. Choi and J. Lee, Thin Solid Films 475, 283 (2005).CrossRefADSGoogle Scholar
  30. 30.
    T. Choi and J. Lee, Ferroelectrics 328, 41 (2005).CrossRefGoogle Scholar
  31. 31.
    H.-M. Christen, L. A. Knauss, and K. S. Harshavardhan, Mater. Sci. Eng., B 56, 200 (1998).CrossRefGoogle Scholar
  32. 32.
    T. Tsurumi, T. Harigai, D. Tanaka, S. M. -Nam, H. Kakemoto, S. Wada, and K. Saito, Appl. Phys. Lett. 85, 5016 (2004).CrossRefADSGoogle Scholar
  33. 33.
    K. Yang, C. L. Wang, J. C. Li, M. L. Zhao, and X. Y. Wang, Solid State Commun. 139, 144 (2006).CrossRefADSGoogle Scholar
  34. 34.
    K. Yang, C. Wang, J. Li, C. Zhang, R. Zhang, Y. Zhang, Q. Wu, Y. Lv, and N. Yin, Phys. Rev. B: Condens. Matter 75, 224117 (2007).ADSGoogle Scholar
  35. 35.
    T.-B. Wu and C.-L. Hung, Appl. Phys. Lett. 86, 112902 (2005).CrossRefADSGoogle Scholar
  36. 36.
    C.-L. Hung, Y.-L. Chueh, T.-B. Wu, and L.-J. Chou, J. Appl. Phys. 97, 034105 (2005).CrossRefADSGoogle Scholar
  37. 37.
    T. Tsurumi, T. Ichikawa, T. Harigai, H. Kakemoto, and S. Wada, J. Appl. Phys. 91, 2284 (2002).CrossRefADSGoogle Scholar
  38. 38.
    P. R. Choudhury and S. B. Krupanidhi, Appl. Phys. Lett. 92, 102903 (2008).CrossRefADSGoogle Scholar
  39. 39.
    F. L. Marrec, R. Farhi, M. E. Marssi, J. L. Dellis, M. G. Karkut, and D. Ariosa, Phys. Rev. B: Condens. Matter 61, R6447 (2000).ADSGoogle Scholar
  40. 40.
    F. L. Marrec, R. Farhi, D. Ariosa, M. E. Marssi, J.-L. Dellis, and M. G. Karkut, Ferroelectrics 241, 125 (2000).CrossRefGoogle Scholar
  41. 41.
    F. L. Marrec, R. Farhi, B. Dkhil, J. Chevreul, and M. G. Karkut, J. Eur. Ceram. Soc. 21, 1615 (2001).CrossRefGoogle Scholar
  42. 42.
    V. R. Cooper and K. M. Rabe, Phys. Rev. B: Condens. Matter 79, 180101 (2009).ADSGoogle Scholar
  43. 43.
    S. M. Nakhmanson, K. M. Rabe, and D. Vanderbilt, Appl. Phys. Lett. 87, 102906 (2005).CrossRefADSGoogle Scholar
  44. 44.
    S. S. A. Seo and H. N. Lee, Appl. Phys. Lett. 94, 232904 (2009).CrossRefADSGoogle Scholar
  45. 45.
    H.-M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, L. A. Géa, P. J. Marrero, and D. P. Norton, Appl. Phys. Lett. 68, 1488 (1996).CrossRefADSGoogle Scholar
  46. 46.
    H.-M. Christen, E. D. Specht, D. P. Norton, M. F. Chisholm, and L. A. Boatner, Appl. Phys. Lett. 72, 2535 (1998).CrossRefADSGoogle Scholar
  47. 47.
    E. D. Specht, H.-M. Christen, D. P. Norton, and L. A. Boatner, Phys. Rev. Lett. 80, 4317 (1998).CrossRefADSGoogle Scholar
  48. 48.
    M. Sepliarsky, S. R. Phillpot, D. Wolf, M. G. Stachiotti, and R. L. Migoni, Phys. Rev. B: Condens. Matter 64, 060101 (2001).ADSGoogle Scholar
  49. 49.
    M. Sepliarsky, S. R. Phillpot, D. Wolf, M. G. Stachiotti, and R. L. Migoni, J. Appl. Phys. 90, 4509 (2001).CrossRefADSGoogle Scholar
  50. 50.
    M. Sepliarsky, S. R. Phillpot, M. G. Stachiotti, and R. L. Migoni, J. Appl. Phys. 91, 3165 (2002).CrossRefADSGoogle Scholar
  51. 51.
    J. Sigman, D. P. Norton, H. M. Christen, P. H. Fleming, and L. A. Boatner, Phys. Rev. Lett. 88, 097601 (2002).CrossRefADSGoogle Scholar
  52. 52.
    J. Sigman, H. J. Bae, D. P. Norton, J. Budai, and L. A. Boatner, J. Vac. Sci. Technol. A 22, 2010 (2004).CrossRefADSGoogle Scholar
  53. 53.
    S. Hao, G. Zhou, X. Wang, J. Wu, W. Duan, and B.-L. Gu, Appl. Phys. Lett. 86, 232903 (2005).CrossRefADSGoogle Scholar
  54. 54.
    Z. Li, T. Lü, and W. Cao, J. Appl. Phys. 104, 126106 (2008).CrossRefADSGoogle Scholar
  55. 55.
    X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, and D. C. Allan, Comput. Mater. Sci. 25, 478 (2002).CrossRefGoogle Scholar
  56. 56.
    J. P. Perdew and A. Zunger, Phys. Rev. B: Condens. Matter 23, 5048 (1981).ADSGoogle Scholar
  57. 57.
    A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, Phys. Rev. B: Condens. Matter 41, 1227 (1990).ADSGoogle Scholar
  58. 58.
  59. 59.
    N. J. Ramer and A. M. Rappe, Phys. Rev. B: Condens. Matter 59, 12471 (1999).ADSGoogle Scholar
  60. 60.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 13, 5188 (1976).MathSciNetADSGoogle Scholar
  61. 61.
    Physics of Ferroelectrics: A Modern Perspective, Ed. by K. M. Rabe, C. H. Ahn, and J.-M. Triscone (Springer, Berlin, 2007).Google Scholar
  62. 62.
    Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology: New Series (Springer, Berlin, 2001), Group III, Vol. 36A1.Google Scholar
  63. 63.
    L. Kim, J. Kim, U. V. Waghmare, D. Jung, and L. Lee, Phys. Rev. B: Condens. Matter 72, 214121 (2005).ADSGoogle Scholar
  64. 64.
    L. Kim, J. Kim, D. Jung, J. Lee, and U. V. Waghmare, Appl. Phys. Lett. 87, 052903 (2005).CrossRefADSGoogle Scholar
  65. 65.
    P. Ghosez, E. Cockayne, U. V. Waghmare, and K. M. Rabe, Phys. Rev. B: Condens. Matter 60, 836 (1999).ADSGoogle Scholar
  66. 66.
    B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, and S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999).CrossRefADSGoogle Scholar
  67. 67.
    T. K.-Y. Wong, B. J. Kennedy, C. J. Howard, B. A. Hunter, and T. Vogt, J. Solid State Chem. 156, 255 (2001).CrossRefADSGoogle Scholar
  68. 68.
    A. R. Akbarzadeh, I. Kornev, C. Malibert, L. Bellaiche, and J. M. Kiat, Phys. Rev. B: Condens. Matter 72, 205104 (2005).ADSGoogle Scholar
  69. 69.
    M. Veith, S. Mathur, N. Lecerf, V. Huch, T. Decker, H. P. Beck, W. Eiser, and R. Haberkorn, J. Sol-Gel Sci. Technol. 17, 145 (2000).CrossRefGoogle Scholar
  70. 70.
    I. Tomeno, Y. Tsunoda, K. Oka, M. Matsuura, and M. Nishi, Phys. Rev. B: Condens. Matter 80, 104101 (2009).ADSGoogle Scholar
  71. 71.
    D. W. Baker, P. A. Thomas, N. Zhang, and A. M. Glazer, Appl. Phys. Lett. 95, 091903 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations