Physics of the Solid State

, Volume 52, Issue 7, pp 1409–1416

Phase transitions as a function of material constants and temperature in intermetallic compounds of the terfenol-D type

  • Yu. A. Fridman
  • F. N. Klevets
  • A. P. Voĭtenko
Magnetism and Ferroelectricity

Abstract

A model of magnetic and magnetoelastic properties of intermetallic compounds has been considered with the inclusion of the influence of the “giant” magnetoelastic coupling and the biquadratic exchange interaction. The phase transitions as a function of material constants and temperature have been investigated in the framework of the proposed model. It has been demonstrated that the ferromagnetic and quadrupole phases can be formed in the system under consideration. In this case, the phase transition between these phases is a first-order transition and occurs through the intermediate, i.e., quadrupole-ferromagnetic, state. The dependences of the phase transition temperature on the Heisenberg and biquadratic exchange interaction constants have been obtained for compounds of the terfenol-D type.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. P. Belov and V. I. Sokolov, Zh. Éksp. Teor. Fiz. 48, 979 (1965) [Sov. Phys. JETP 21, 652 (1965)].Google Scholar
  2. 2.
    I. S. Tereshina, S. A. Nikitin, G. A. Politova, A. A. Opalenko, E. A. Tereshina, and I. V. Telegina, Fiz. Tverd. Tela (St. Petersburg) 51(1), 85 (2009) [Phys. Solid State 51 (1), 92 (2009)].Google Scholar
  3. 3.
    S. A. Nikitin, T. I. Ivanova, N. Yu. Pankratov, Yu. G. Pastushenkov, and K. P. Skokov, Fiz. Tverd. Tela (St. Petersburg) 47(3), 501 (2005) [Phys. Solid State 47 (3), 517 (2005)].Google Scholar
  4. 4.
    V. Massidda, J. Magn. Magn. Mater. 320, 851 (2008).CrossRefADSGoogle Scholar
  5. 5.
    R. Anderson, Solid State Phys. 14, 99 (1965).CrossRefGoogle Scholar
  6. 6.
    R. Elliot and M. Thorpe, J. Appl. Phys. 39, 802 (1968).CrossRefADSGoogle Scholar
  7. 7.
    É. L. Nagaev, Magnets with Complex Exchange Interactions (Nauka, Moscow, 1988) [in Russian].Google Scholar
  8. 8.
    H. H. Chen and P. M. Levy, Phys. Rev. B: Solid State 7, 4267 (1973).ADSGoogle Scholar
  9. 9.
    B. C. Frazer, G. Shirane, D. E. Cox, and P. J. Brown, Phys. Rev. A 140, 2139 (1965).CrossRefGoogle Scholar
  10. 10.
    E. A. Turov and V. G. Shavrov, Usp. Fiz. Nauk 140(3), 429 (1983) [Sov. Phys.-Usp. 26 (7), 593 (1983)].Google Scholar
  11. 11.
    P. B. Terent’ev, N. V. Mushnikov, V. S. Gaviko, L. A. Shreder, and E. V. Rosenfeld, J. Magn. Magn. Mater. 320, 836 (2008).CrossRefADSGoogle Scholar
  12. 12.
    G. Xinchun, D. Xufeng, and O. Jinping, J. Magn. Magn. Mater. 321, 2742 (2009).CrossRefGoogle Scholar
  13. 13.
    R. O. Zaĭtsev, Zh. Éksp. Teor. Fiz. 68(1), 207 (1975) [Sov. Phys. JETP 41 (1), 100 (1975)].Google Scholar
  14. 14.
    V. G. Bar’yakhtar, V. N. Krivoruchko, and D. A. Yablonskiĭ, Green’s Functions in the Theory of Magnetism (Naukova Dumka, Kiev, 1984) [in Russian].Google Scholar
  15. 15.
    Yu. N. Mitsaĭ and Yu. A. Fridman, Teor. Mat. Fiz. 81, 263 (1989).Google Scholar
  16. 16.
    V. V. Val’kov and T. A. Val’kova, Preprint No. 667F, IF SO AN SSSR (Kirensky Institute of Physics, Siberian Branch of the Academy of Sciences of the Soviet Union, Krasnoyarsk, 1990).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Yu. A. Fridman
    • 1
  • F. N. Klevets
    • 1
  • A. P. Voĭtenko
    • 1
  1. 1.Taurida National V. I. Vernadsky UniversitySimferopolCrimean Autonomous Republic, Ukraine

Personalised recommendations