Physics of the Solid State

, Volume 52, Issue 4, pp 826–837 | Cite as

State of iron in nanoparticles prepared by impregnation of silica gel and aluminum oxide with FeSO4 solutions

  • G. A. Bukhtiyarova
  • O. N. Mart’yanov
  • S. S. Yakushkin
  • M. A. Shuvaeva
  • O. A. Bayukov
Low-Dimensional Systems and Surface Physics


The state of iron in nanoparticles prepared by impregnating silica gel and aluminum oxide with iron(II) sulfate solutions has been investigated using Mössbauer spectroscopy. It has been revealed that the state of iron depends on the nature of the support. Iron(III) hydroxysulfate and iron(III) oxysulfate nanoparticles are formed on the surface of silica gel, and iron oxide nanoparticles are formed on the surface of aluminum oxide. An increase in the concentration of iron ions or in the size of iron-containing particles leads to hydration of the nanoparticle surface. The calcination of the samples results in the formation of ɛ-Fe2O3 oxide in a strongly disordered or amorphous state in iron-containing particles on the surface of silica gel.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Petkova and Y. Pelovski, J. Therm. Anal. Calorim. 64, 1025; J. Therm. Anal. Calorim. 64, 1037 (2001).Google Scholar
  2. 2.
    Y. Pelovski, V. Petkova, and S. Nikolov, Thermochim. Acta 274, 273 (1996).CrossRefGoogle Scholar
  3. 3.
    P. K. Gallagher, D. W. Johnson, and F. Schrey, J. Am. Ceram. Soc. 53, 666 (1970).CrossRefGoogle Scholar
  4. 4.
    K. S. Neto and V. K. Garg, J. Anorg. Nucl. Chem. 37, 2287 (1975).CrossRefGoogle Scholar
  5. 5.
    A. M. van der Kraan, Phys. Status Solidi A 18, 215 (1973).CrossRefADSGoogle Scholar
  6. 6.
    R. Zboril, M. Mashlan, D. Krausova, and P. Pikal, Hyperfine Interact. 120/121, 497 (1999).CrossRefADSGoogle Scholar
  7. 7.
    R. Zboril, M. Mashlan, and D. Krausova, in Mössbauer Spectroscopy in Materials Science, Ed. by M. Miglerini and D. Petridis (Kluwer, Dordrecht, The Netherlands, 1999), p. 49.Google Scholar
  8. 8.
    Y. Ikeda, M. Takano, and Y. Bando, Bull. Inst. Chem. Res., Kyoto Univ. 64, 249 (1986).Google Scholar
  9. 9.
    D. G. Chambaere, E. de Grave, R. L. Vanleerbeerghe, and R. E. Vandenberghe, Hyperfine Interact. 20, 249 (1984).CrossRefADSGoogle Scholar
  10. 10.
    D. Chambaere, A. Govaert, J. de Sitter, and E. de Grave, Solid State Commun. 26, 657 (1978).CrossRefADSGoogle Scholar
  11. 11.
    D. Chambaere and E. de Grave, J. Magn. Magn. Mater. 42, 263 (1984).CrossRefADSGoogle Scholar
  12. 12.
    R. E. Vandenberghe, E. de Grave, C. Landuydt, and L. H. Bowen, Hyperfine Interact. 53, 175 (1990).CrossRefADSGoogle Scholar
  13. 13.
    E. de Grave, R. M. Persoons, D. G. Chambaere, R. E. Vandenberghe, and L. H. Bowen, Phys. Chem. Miner. 13, 61 (1986).CrossRefADSGoogle Scholar
  14. 14.
    E. Murad, J. Magn. Magn. Mater. 74, 153 (1988).CrossRefADSGoogle Scholar
  15. 15.
    D. R. Mabe, A. M. Khasanov, and J. G. Stevens, Hyperfine Interact. 165, 209 (2005).CrossRefADSGoogle Scholar
  16. 16.
    J. G. Stevens, A. M. Khasanov, and M. S. G. White, Hyperfine Interact. 151/152, 283 (2003).CrossRefADSGoogle Scholar
  17. 17.
    S. V. Stolyar, O. A. Bayukov, Yu. L. Gurevich, V. P. Ladygina, R. S. Iskhakov, and P. P. Pustoshilov, Neorg. Mater. 43(6), 725 (2007) [Inorg. Mater. 43 (6), 638 (2007)].CrossRefGoogle Scholar
  18. 18.
    S. V. Stolyar, O. A. Bayukov, Yu. L. Gurevich, R. S. Iskhakov, and V. P. Ladygina, Izv. Akad. Nauk, Ser. Fiz. 71(9), 1310 (2007) [Bull. Russ. Acad. Sci.: Phys. 71 (9), 1286 (2007)].Google Scholar
  19. 19.
    E. Jansen, A. Kyek, W. Schafer, and U. Schwertmann, Appl. Phys. A: Solids Surf. 74(Suppl.), S1004 (2002).ADSGoogle Scholar
  20. 20.
    W. K. Wertheim and J. P. Remeika, Phys. Lett. 10, 14 (1964).CrossRefADSGoogle Scholar
  21. 21.
    I. P. Suzdalev, Dynamic Effects in Mössbauer Spectroscopy (Atomizdat, Moscow, 1979) [in Russian].Google Scholar
  22. 22.
    E. Tronc, C. Chaneac, and J. P. Jolivet, J. Solid State Chem. 139, 93 (1998).CrossRefADSGoogle Scholar
  23. 23.
    R. Zboril, M. Mashlan, V. Papaefthymiou, and G. Hadjipanayis, J. Radioanal. Nucl. Chem. 255, 413 (2003).CrossRefGoogle Scholar
  24. 24.
    K. Kelm and W. Mader, Z. Anorg. Allg. Chem. 631, 2383 (2005).CrossRefGoogle Scholar
  25. 25.
    I. Dezsi and J. M. D. Coey, Phys. Status Solidi A 15, 681 (1973).CrossRefADSGoogle Scholar
  26. 26.
    M. V. Eremin, Fiz. Tverd. Tela (Leningrad) 24(2), 423 (1982) [Sov. Phys. Solid State 24 (2), 239 (1982)].MathSciNetGoogle Scholar
  27. 27.
    O. A. Bayukov and A. F. Savitskiĭ, Fiz. Tverd. Tela (St. Petersburg) 36(7), 1923 (1994) [Phys. Solid State 36 (7), 1049 (1994)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • G. A. Bukhtiyarova
    • 1
  • O. N. Mart’yanov
    • 1
  • S. S. Yakushkin
    • 1
  • M. A. Shuvaeva
    • 1
  • O. A. Bayukov
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Kirensky Institute of Physics, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations