Physics of the Solid State

, Volume 52, Issue 4, pp 734–743

Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz

  • G. A. Komandin
  • V. I. Torgashev
  • A. A. Volkov
  • O. E. Porodinkov
  • I. E. Spektor
  • A. A. Bush
Optical Properties

Abstract

Reflection and transmission infrared spectra of BiFeO3 ceramic samples have been measured using submillimeter spectroscopy (on a backward-wave tube spectrometer) and Fourier-transform infrared spectroscopy in the frequency range from 5 to 1000 cm−1 at temperatures in the range from 10 to 500 K. New resonant modes (probably, magnetic in nature) with the eigenfrequencies decreasing with an increase in the temperature have been recorded in the range 10–30 cm−1 by IR spectroscopy for the first time. An additional absorption with a fairly large dielectric contribution has been revealed in the range 30–60 cm−1. It has been demonstrated that the corresponding oscillators couple with both the lowest frequency phonon mode and the magnetic subsystem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Schmid, Ferroelectrics 162, 317 (1994); W. Erenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).CrossRefGoogle Scholar
  2. 2.
    M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).CrossRefADSGoogle Scholar
  3. 3.
    S. M. Skinner, IEEE Trans. Parts, Mater. Packag. 6, 68 (1970).CrossRefGoogle Scholar
  4. 4.
    F. Kubel and H. Schmid, Acta Crystallogr., Sect B: Struct. Sci. 46, 698 (1990).CrossRefGoogle Scholar
  5. 5.
    P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, J. Phys. C: Solid State Phys. 13, 1931 (1980).CrossRefADSGoogle Scholar
  6. 6.
    Y. N. Venevtsev, V. V. Gagulin, and I. D. Zhitomirsky, Ferroelectrics 73, 221 (1987).CrossRefGoogle Scholar
  7. 7.
    R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, and J. F. Scott, Phys. Rev. B: Condens. Matter 77, 014110 (2008).ADSGoogle Scholar
  8. 8.
    M. K. Singh, W. Prellier, M. P. Singh, R. S. Katiyar, and J. F. Scott, Phys. Rev. B: Condens. Matter 77, 144403 (2008).ADSGoogle Scholar
  9. 9.
    R. de Sousa and J. E. Moore, Phys. Rev. B: Condens. Matter 77, 012406 (2008).ADSGoogle Scholar
  10. 10.
    M. Cazayous, Y. Gallais, A. Sacuto, R. de Sousa, D. Lebeugle, and D. Colson, Phys. Rev. Lett. 101, 037601 (2008).CrossRefADSGoogle Scholar
  11. 11.
    M. K. Singh, R. S. Katiyar, and J. F. Scott, J. Phys.: Condens. Matter 20, 252 203 (2008).Google Scholar
  12. 12.
    S. Kamba, D. Nuzhnyy, M. Savinov, J. Šebek, J. Petzelt, J. Prokleška, R. Haumont, and J. Kreisel, Phys. Rev. B: Condens. Matter 75, 024403 (2007).ADSGoogle Scholar
  13. 13.
    R. P. S. M. Lobo, R. L. Moreira, D. Lebeugle, and D. Colson, Phys. Rev. B: Condens. Matter 76, 172105 (2007).ADSGoogle Scholar
  14. 14.
    A. Maitre, M. Francois, and J. C. Gashon, J. Phase Equilib. Diffus. 25, 59 (2004).Google Scholar
  15. 15.
    S. M. Selbach, M.-A. Einarsrud, and T. Grande, Chem. Mater. 21, 169 (2009).CrossRefGoogle Scholar
  16. 16.
    S. A. Fedulov, Yu. N. Venevtsev, G. S. Zhdanov, and E. P. Smazhevskaya, Kristallografiya 6(5), 795 (1961) [Sov. Phys. Crystallogr. 6 (5), 640 (1961)].Google Scholar
  17. 17.
    J. L. Mukherjee and F. Y. Wang, J. Am. Ceram. Soc. 54, 31 (1971).CrossRefGoogle Scholar
  18. 18.
    G. D. Achenbach, W. J. James, and R. Gerson, J. Am. Ceram. Soc. 50, 437 (1967).CrossRefGoogle Scholar
  19. 19.
    M. Valant, A.-K. Axelsson, and N. Alford, Chem. Mater. 19, 5431 (2007).CrossRefGoogle Scholar
  20. 20.
    N. Shamir, E. Gurewitz, and H. Shaked, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 34, 662 (1978).CrossRefADSGoogle Scholar
  21. 21.
    Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.-M. Liu, and Z. G. Liu, Appl. Phys. Lett. 84, 1731 (2004).CrossRefADSGoogle Scholar
  22. 22.
    G. V. Kozlov and A. A. Volkov, in Topics in Applied Physics, Vol. 74: Millimeter and Submillimeter Wave Spectroscopy of Solids, Ed. by G. Gruner (Springer, Berlin, 1998), p. 52.Google Scholar
  23. 23.
    A. S. Barker and J. J. Hopfield, Phys. Rev. [Sect.] A 135, 1732 (1964).ADSGoogle Scholar
  24. 24.
    R. Haumont, J. Kreisel, and P. Bouvier, Phase Transform. 79, 1043 (2006); R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, Phys. Rev. B: Condens. Matter 73, 132101 (2006).CrossRefGoogle Scholar
  25. 25.
    M. Cazayous, D. Malka, D. Lebeugle, and D. Colson, Appl. Phys. Lett. 91, 071910 (2007).CrossRefADSGoogle Scholar
  26. 26.
    H. Fukumura, S. Matsui, H. Harima, T. Takahashi, T. Itoh, K. Kisoda, M. Tamada, Y. Noguchi, and M. Miyayama, J. Phys.: Condens. Matter 19, 365224 (2007).CrossRefGoogle Scholar
  27. 27.
    D. Kothari, V. R. Reddy, V. G. Sathe, A. Gupta, A. Banerjee, and A. M. Awasthi, J. Magn. Magn. Mater. 320, 548 (2008).CrossRefADSGoogle Scholar
  28. 28.
    D. Rout, K.-S. Moon, and S.-J. L. Kang, J. Raman Spectrosc. 40, 618 (2009).CrossRefADSGoogle Scholar
  29. 29.
    Y. Yang, J. Y. Sun, K. Zhu, Y. L. Liu, J. Chen, and X. R. Xing, Physica B (Amsterdam) 404, 171 (2009).ADSGoogle Scholar
  30. 30.
    P. Hermet, M. Goffinet, J. Kreisel, and Ph. Ghosez, Phys. Rev. B: Condens. Matter 75, 220 102(R) (2007).Google Scholar
  31. 31.
    H. M. Tütüncü and G. P. Srivastava, J. Appl. Phys. 103, 083712 (2008); P. Hermet, M. Goffinet, and Ph. Ghosez, J. Appl. Phys. 105, 036 108 (2009); H. M. Tütüncü and G. P. Srivastava, J. Appl. Phys. 105, 036109 (2009).CrossRefADSGoogle Scholar
  32. 32.
    M. Goffinet, P. Hermet, D. I. Bilc, and Ph. Ghosez, Phys. Rev. B: Condens. Matter 79, 014403 (2009).ADSGoogle Scholar
  33. 33.
    P. Rovillain, M. Cazayous, Y. Gallais, A. Sacuto, R. P. S. M. Lobo, D. Lebeugle, and D. Colson, Phys. Rev. B: Condens. Matter 79, 180411 (2009).ADSGoogle Scholar
  34. 34.
    D. C. Arnold, K. S. Knight, F. D. Morrison, and P. Lightfoot, Phys. Rev. Lett. 102, 027602 (2009).CrossRefADSGoogle Scholar
  35. 35.
    O. V. Kovalev, Irreducible Representations of the Space Groups (Academy of Sciences of the Soviet Union, Kiev, Soviet Union, 1961; Gordon and Breach, New York, 1965).Google Scholar
  36. 36.
    V. I. Torgashev, V. B. Shirokov, A. S. Prokhorov, and L. A. Shuvalov, Kristallografiya 50(4), 689 (2005) [Sov. Phys. Crystallogr. 50 (4), 637 (2005)].Google Scholar
  37. 37.
    S. M. Selbach, T. Tybell, M.-A. Einarsrud, and T. Grande, Adv. Mater. (Weinheim) 20, 3692 (2008).CrossRefGoogle Scholar
  38. 38.
    R. Haumont, P. Bouvier, A. Pashkin, K. Rabia, S. Frank, B. Dkhil, W. A. Crichton, C. A. Kuntscher, and J. Kreisel, Phys. Rev. B: Condens. Matter 79, 184 110 (2009).Google Scholar
  39. 39.
    J. T. Last, Phys. Rev. 105, 1740 (1957).CrossRefADSGoogle Scholar
  40. 40.
    J. C. Slater, Phys. Rev. 78, 748 (1950).MATHCrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • G. A. Komandin
    • 1
  • V. I. Torgashev
    • 2
  • A. A. Volkov
    • 1
  • O. E. Porodinkov
    • 1
  • I. E. Spektor
    • 1
  • A. A. Bush
    • 3
  1. 1.A. M. Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia
  3. 3.Moscow State Institute of Radio Engineering, Electronics, and Automation (Technical University)MoscowRussia

Personalised recommendations