Physics of the Solid State

, 51:2324 | Cite as

Ab initio studies of dielectric, piezoelectric, and elastic properties of BaTiO3/SrTiO3 ferroelectric superlattices

Magnetism and Ferroelectricity

Abstract

The phonon spectrum; crystal structure of the polar phase; spontaneous polarization; dielectric constant, piezoelectric, and elastic moduli tensors for free_standing and substrate_supported superlattices mBaTiO3/nSrTiO3 (with m = n = 1–4) were calculated within the density functional theory. The simulation of properties of the disordered Ba0.5Sr0.5TiO3 solid solution using two special quasirandom SQS-4 structures and their comparison with the properties of the superlattices revealed a tendency of the BaTiO3-SrTiO3 system to superstructure ordering and showed that the superlattices are thermodynamically quite stable. The ground state of the free-standing superlattice corresponds to the monoclinic polar phase Cm, which transforms to the tetragonal polar phase P4mm under in-plane compressive strain of the superlattice and to the orthorhombic polar phase Amm2 under in-plane tensile strain. With a change in the in-plane lattice parameter, in the vicinity of boundaries between neighboring polar phases, some optical and acoustic modes soften and some components of the static dielectric constant, piezoelectric, and elastic moduli tensors diverge critically.

PACS numbers

64.60.-i 68.65.Cd 77.84.Dy 81.05.Zx 

References

  1. 1.
    N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998).CrossRefADSGoogle Scholar
  2. 2.
    O. Diéguez, S. Tinte, A. Antons, C. Bungaro, J. B. Neaton, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B: Condens. Matter. 69, 212101 (2004).ADSGoogle Scholar
  3. 3.
    J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, Nature (London) 430, 758 (2004).CrossRefADSGoogle Scholar
  4. 4.
    M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).CrossRefADSGoogle Scholar
  5. 5.
    K. Iijima, T. Terashima, Y. Bando, K. Kamigaki, and H. Terauchi, J. Appl. Phys. 72, 2840 (1992).CrossRefADSGoogle Scholar
  6. 6.
    E. Wiener-Avnear, Appl. Phys. Lett. 65, 1784 (1994).CrossRefADSGoogle Scholar
  7. 7.
    H. Tabata, H. Tanaka, and T. Kawai, Appl. Phys. Lett. 65, 1970 (1994).CrossRefADSGoogle Scholar
  8. 8.
    H. Tabata and T. Kawai, Appl. Phys. Lett. 70, 321 (1997).CrossRefADSGoogle Scholar
  9. 9.
    T. Zhao, Z.-H. Chen, F. Chen, W.-S. Shi, H.-B. Lu, and G.-Z. Yang, Phys. Rev. B: Condens. Matter 60, 1697 (1999).ADSGoogle Scholar
  10. 10.
    O. Nakagawara, T. Shimuta, T. Makino, S. Arai, H. Tabata, and T. Kawai, Appl. Phys. Lett. 77, 3257 (2000).CrossRefADSGoogle Scholar
  11. 11.
    T. Tsurumi, T. Ichikawa, T. Harigai, H. Kakemoto, and S. Wada, J. Appl. Phys. 91, 2284 (2002).CrossRefADSGoogle Scholar
  12. 12.
    T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata, and T. Kawai, J. Appl. Phys. 91, 2290 (2002).CrossRefADSGoogle Scholar
  13. 13.
    J. Kim, Y. Kim, Y. S. Kim, J. Lee, L. Kim, and D. Jung, Appl. Phys. Lett. 80, 3581 (2002).CrossRefADSGoogle Scholar
  14. 14.
    S. Rios, A. Ruediger, A. Q. Jiang, J. F. Scott, H. Lu, and Z. Chen, J. Phys.: Condens. Matter 15, L305 (2003).CrossRefADSGoogle Scholar
  15. 15.
    A. Q. Jiang, J. F. Scott, H. Lu, and Z. Chen, J. Appl. Phys. 93, 1180 (2003).CrossRefADSGoogle Scholar
  16. 16.
    F. Q. Tong, W. X. Yu, F. Liu, Y. Zuo, and X. Ge, Mater. Sci. Eng., B 98, 6 (2003).CrossRefGoogle Scholar
  17. 17.
    T. Harigai, D. Tanaka, H. Kakemoto, S. Wada, and T. Tsurumi, J. Appl. Phys. 94, 7923 (2003).CrossRefADSGoogle Scholar
  18. 18.
    J. Lee, L. Kim, J. Kim, D. Jung, and U. V. Waghmare, J. Appl. Phys. 100, 051613 (2006).CrossRefADSGoogle Scholar
  19. 19.
    W. Tian, J. C. Jiang, X. Q. Pan, J. H. Haeni, Y. L. Li, L. Q. Chen, D. G. Schlom, J. B. Neaton, K. M. Rabe, and Q. X. Jia, Appl. Phys. Lett. 89, 092905 (2006).CrossRefADSGoogle Scholar
  20. 20.
    B. R. Kim, T.-U. Kim, W.-J. Lee, J. H. Moon, B.-T. Lee, H. S. Kim, and J. H. Kim, Thin Solid Films 515, 6438 (2007).CrossRefADSGoogle Scholar
  21. 21.
    J. B. Neaton and K. M. Rabe, Appl. Phys. Lett. 82, 1586 (2003).CrossRefADSGoogle Scholar
  22. 22.
    K. Johnston, X. Huang, J. B. Neaton, and K. M. Rabe, Phys. Rev. B: Condens. Matter 71, 100103 (2005).ADSGoogle Scholar
  23. 23.
    L. Kim, J. Kim, D. Jung, J. Lee, and U. V. Waghmare, Appl. Phys. Lett. 87, 052903 (2005).CrossRefADSGoogle Scholar
  24. 24.
    L. Kim, J. Kim, U.V. Waghmare, D. Jung, and J. Lee, Phys. Rev. B: Condens. Matter 72, 214121 (2005).ADSGoogle Scholar
  25. 25.
    S. Lisenkov and L. Bellaiche, Phys. Rev. B: Condens. Matter 76, 020102 (2007).ADSGoogle Scholar
  26. 26.
    J. H. Lee, U. V. Waghmare, and J. Yu, J. Appl. Phys. 103, 124106 (2008).CrossRefADSGoogle Scholar
  27. 27.
    Z. Y. Zhu, H. Y. Zhang, M. Tan, X. H. Zhang, and J. C. Han, J. Phys. D: Appl. Phys. 41, 215 408 (2008).Google Scholar
  28. 28.
    S. Lisenkov, I. Ponomareva, and L. Bellaiche, Phys. Rev. B: Condens. Matter 79, 024101 (2009).ADSGoogle Scholar
  29. 29.
    C. Bungaro and K. M. Rabe, Phys. Rev. B: Condens. Matter 69, 184101 (2004).ADSGoogle Scholar
  30. 30.
    G. Sághi-Szabó, R. E. Cohen, and H. Krakauer, Phys. Rev. B: Condens. Matter 59, 12771 (1999).ADSGoogle Scholar
  31. 31.
    X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D. C. Allan, Comput. Mater. Sci. 25, 478 (2002).CrossRefGoogle Scholar
  32. 32.
    J. P. Perdew and A. Zunger, Phys. Rev. B: Condens. Matter 23, 5048 (1981).ADSGoogle Scholar
  33. 33.
    A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, Phys. Rev. B: Condens. Matter 41, 1227 (1990).ADSGoogle Scholar
  34. 34.
    N. J. Ramer and A. M. Rappe, Phys. Rev. B: Condens. Matter 59, 12471 (1999).ADSGoogle Scholar
  35. 35.
    A. I. Lebedev, Fiz. Tverd. Tela (St. Petersburg) 51(2), 341 (2009) [Phys. Solid State 51 (2), 362 (2009)].Google Scholar
  36. 36.
    G.-M. Rignanese, X. Gonze, and A. Pasquarello, Phys. Rev. B: Condens. Matter 63, 104305 (2001).ADSGoogle Scholar
  37. 37.
    R. D. King-Smith and D. Vanderbilt, Phys. Rev. B: Condens. Matter 47, 1651 (1993).ADSGoogle Scholar
  38. 38.
    A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev. Lett. 65, 353 (1990).CrossRefADSGoogle Scholar
  39. 39.
    B. P. Burton and E. Cockayne, Ferroelectrics 270, 173 (2002).CrossRefGoogle Scholar
  40. 40.
    S. A. Prosandeev, E. Cockayne, B. P. Burton, S. Kamba, J. Petzelt, Yu. Yuzyuk, R. S. Katiyar, and S. B. Vakhrushev, Phys. Rev. B: Condens. Matter 70, 134110 (2004).ADSGoogle Scholar
  41. 41.
    A. van de Walle and G. Ceder, J. Phase Equilib. 23, 348 (2002).CrossRefGoogle Scholar
  42. 42.
    D. Fuks, S. Dorfman, S. Piskunov, and E. A. Kotomin, Phys. Rev. B: Condens. Matter 71, 014111 (2005).ADSGoogle Scholar
  43. 43.
    H. Fu and R. E. Cohen, Nature (London) 403, 281 (2000).CrossRefADSGoogle Scholar
  44. 44.
    R. Guo, L. E. Cross, S.-E. Park, B. Noheda, D. E. Cox, and G. Shirane, Phys. Rev. Lett. 84, 5423 (2000).CrossRefADSGoogle Scholar
  45. 45.
    Z. Wu and H. Krakauer, Phys. Rev. B: Condens. Matter 68, 014112 (2003).ADSGoogle Scholar
  46. 46.
    R. Blinc and B. Žekš, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974; Mir, Moscow, 1975).Google Scholar
  47. 47.
    A. Antons, J. B. Neaton, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B: Condens. Matter 71, 024102 (2005).ADSGoogle Scholar
  48. 48.
    S.-E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).CrossRefADSGoogle Scholar
  49. 49.
    Z. Wu and R. E. Cohen, Phys. Rev. Lett. 95, 037601 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations