Physics of the Solid State

, Volume 51, Issue 8, pp 1608–1612 | Cite as

Electronic and elastic properties of the superconducting nanolaminate Ti2InC

Metals and Superconductors

Abstract

The electronic properties and elastic parameters of the superconducting nanolaminate Ti2InC are analyzed using the ab initio full-potential linearized augmented-plane-wave (FLAPW) method with the generalized gradient approximation (GGA) of the local spin density. The equilibrium parameters of the crystal lattice, the band structure, the total and partial densities of states, and the Fermi surface are determined within a unified approach. The independent elastic constants, the bulk modulus, and the shear modulus are calculated, and the elastic parameters are numerically estimated for the first time for polycrystalline Ti2InC.

PACS numbers

71.20.-b 62.20.D- 81.05.Je 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. W. Barsoum, Prog. Solid Chem. 28, 201 (2000).CrossRefGoogle Scholar
  2. 2.
    A. L. Ivanovskiĭ, Usp. Khim. 65, 499 (1995).Google Scholar
  3. 3.
    Z. M. Sun, R. Ahuja, and J. M. Schneider, Phys. Rev. B: Condens. Matter 68, 224112 (2003).Google Scholar
  4. 4.
    M. W. Barsoum and T. El-Raghy, J. Am. Ceram. Soc. 79, 1953 (1996).CrossRefGoogle Scholar
  5. 5.
    M. W. Barsoum, D. Brodkin, and T. El-Raghy, Scr. Metall. Mater. 36, 535 (1997).Google Scholar
  6. 6.
    J.-F. Li, W. Pan, F. Sato, and R. Watanabe, Acta Mater. 49, 937 (2001).CrossRefGoogle Scholar
  7. 7.
    S. Amini, M. W. Barsoum, and T. El-Raghy, J. Am. Ceram. Soc. 90, 3953 (2007).Google Scholar
  8. 8.
    N. I. Medvedeva and A. J. Freeman, Scr. Mater. 58, 671 (2008).CrossRefGoogle Scholar
  9. 9.
    M. W. Barsoum, in Encyclopedia of Materials: Science and Technology (Elsevier, Amsterdam, 2006), p. 1.Google Scholar
  10. 10.
    L. E. Toth, W. Jaitschko, and M. Yen, J. Less-Common Met. 10, 129 (1967).CrossRefGoogle Scholar
  11. 11.
    K. Sakamaki, H. Wada, H. Y. Nozaki, Y. Onuki, and M. Kawai, Solid State Commun. 112, 323 (1999).CrossRefADSGoogle Scholar
  12. 12.
    A. D. Bortolozo, O. H. Sant’Anna, M. S. da Luz, C. A. M. dos Sandos, A. S. Pereira, K. S. Trentin, and A. J. S. Machado, Solid State Commun. 139, 57 (2007).CrossRefADSGoogle Scholar
  13. 13.
    S. E. Lofland, J. D. Hettinger, T. Meehan, A. Bryan, P. Finkel, S. Gupta, M. W. Barsoum, and G. Hug, Phys. Rev. B: Condens. Matter 74, 174501 (2006).Google Scholar
  14. 14.
    S. V. Halilov, D. J. Singh, and D. A. Papaconstantopoulos, Phys. Rev. B: Condens. Matter 65, 174 519 (2002).Google Scholar
  15. 15.
    I. R. Shein, V. G. Bamburov, and A. L. Ivanovskii, Dokl. Akad. Nauk, Ser. Fiz. Khim. 411(1–3), 343 (2006) [Dokl. Phys. Chem. 411 (Part 1), 317 (2006)].Google Scholar
  16. 16.
    A. D. Bortolozo, O. H. Sant’Anna, C. A. M. dos Sandos, and A. J. S. Machado, Solid State Commun. 144, 419 (2007).CrossRefADSGoogle Scholar
  17. 17.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2001).Google Scholar
  18. 18.
    J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefADSGoogle Scholar
  19. 19.
    F. Jona and P. M. Marcus, Phys. Rev. B: Condens. Matter 66, 094 104 (2002).Google Scholar
  20. 20.
    K. B. Panda and K. S. R. Chandran, Comput. Mater. Sci. 35, 134 (2006).CrossRefGoogle Scholar
  21. 21.
    I. R. Shein and A. L. Ivanovskii, J. Phys.: Condens. Matter 20, 415 218 (2008).Google Scholar
  22. 22.
    W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).MATHGoogle Scholar
  23. 23.
    A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).MATHCrossRefGoogle Scholar
  24. 24.
    M. W. Barsoum, J. Golczewski, H. J. Seifert, and F. Aldinger, J. Alloys Compd. 340, 173 (2002).CrossRefGoogle Scholar
  25. 25.
    A. Ganguly, M. W. Barsoum, and J. Schuster, J. Am. Chem. Soc. 88, 1290 (2005).Google Scholar
  26. 26.
    S. Gupta, E. N. Hoffman, and M. W. Barsoum, J. Alloys Compd. 426, 168 (2006).CrossRefGoogle Scholar
  27. 27.
    R. Hill, Proc. Phys. Soc., London, Sect. A 65, 349 (1952).CrossRefADSGoogle Scholar
  28. 28.
    Y. L. Du, Z. M. Sun, H. Hashimoto, and W. B. Tian, Phys. Lett. A 372, 5220 (2008).CrossRefADSGoogle Scholar
  29. 29.
    A. Bouhemadou and R. Khenata, J. Appl. Phys. 102, 043528 (2007).Google Scholar
  30. 30.
    J. D. Hettinger, S. E. Lofland, P. Finkel, T. Meehan, J. Palma, K. Harrell, S. Gupta, A. Ganguly, T. El-Raghy, and M. W. Barsoum, Phys. Rev. B: Condens. Matter 72, 115120 (2005).Google Scholar
  31. 31.
    A. Bouhemadou, Physica B (Amsterdam) 403, 2707 (2008).ADSGoogle Scholar
  32. 32.
    J. A. Warner, S. K. R. Patil, S. V. Khare, and K. C. Masiulaniec, Appl. Phys. Lett. 88, 101 911 (2006).Google Scholar
  33. 33.
    G. Hug, Phys. Rev. B: Condens. Matter 74, 184 113 (2006).Google Scholar
  34. 34.
    V. V. Ivanovskaya, I. R. Shein, and A. L. Ivanovskii, Diamond Relat. Mater. 16, 243 (2007).CrossRefGoogle Scholar
  35. 35.
    S. F. Pugh, Philos. Mag. 45, 833 (1954).Google Scholar
  36. 36.
    J. Haines, J. M. Leger, and G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001).CrossRefGoogle Scholar
  37. 37.
    D. H. Chung and W. R. Buessem, in Anisotropy in Single Crystal Refractory Compounds, Ed. by F. W. Vahldiek and S. A. Mersol (Plenum, New York, 1968), p. 217.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations