Physics of the Solid State

, Volume 51, Issue 5, pp 1054–1059 | Cite as

Structural peculiarities of carbon nanolayers prepared by deposition from a gaseous phase on Ni

  • I. A. Nyapshaev
  • I. V. Makarenko
  • A. N. Titkov
  • A. V. Tyurnina
  • A. N. Obraztsov
Low-Dimensional Systems and Surface Physics


The surface structure and the mechanical and electrical properties of graphite nanolayers (1–2 nm thick) obtained by the carbon deposition from a gaseous phase on a Ni surface were studied using atomic-force microscopy (AFM). The surface of the nanolayers contains a dense network of line ridges with transverse sizes of several nanometers to several tens of nanometers and with the length of linear segments up to 1–2 μm. The AFM studies permit the conclusion that the observed ridges are mainly formed from carbon nanotubes or nanofilaments. They differ from planar areas of the graphite layer by substantially higher local electric conductivity in the contact with an AFM probe. The formation of ridges on certain portions of the surface may be due to thermal deformation wrinkles of graphite nanolayers that arise on cooling to room temperature.

PACS numbers

68.55.J- 68.37.Ps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, S. V. Dubonos, V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).CrossRefADSGoogle Scholar
  2. 2.
    Y. Zhang, J. P. Small, M. E. Amori, and P. Kim, Appl. Phys. Lett. 86, 073 104 (2005).Google Scholar
  3. 3.
    K. S. Novoselov, E. McCann, and S. V. Morosov, Nat. Phys. 2, 177 (2006).CrossRefGoogle Scholar
  4. 4.
    G. M. Micheev, R. G. Zonov, and A. N. Obraztsov, Appl. Phys. Lett. 84, 4854 (2004).CrossRefADSGoogle Scholar
  5. 5.
    B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nat. Phys. 3, 192 (2007).CrossRefGoogle Scholar
  6. 6.
    A. Wang, Angew. Chem., Int. Ed. 47, 2990 (2009).CrossRefGoogle Scholar
  7. 7.
    S. Stankovich, D. D. Ditkin, and H. B. Dommett, Nature (London) 442, 282 (2006).CrossRefADSGoogle Scholar
  8. 8.
    C. Gomez-Navarro, J. Colchego, and Y. Fan, Nanotechnology 14, 134 (2003).CrossRefADSGoogle Scholar
  9. 9.
    N. A. Kotocv, Nature (London) 442, 254 (2006).CrossRefADSGoogle Scholar
  10. 10.
    A. Ya. Tontegode, Prog. Surf. Sci. 38, 201 (1991).CrossRefGoogle Scholar
  11. 11.
    D. A. Bonnell, Scanning Probe Microscopy and Spectroscopy (Willey, New York, 2001), p. 493.Google Scholar
  12. 12.
    I. V. Makarenko, A. N. Titkov, Z. Waqar, Ph. Dumas, E. V. Rut’kov, and N. R. Gall’, Fiz. Tverd. Tela (St. Petersburg) 49(2), 357 (2007) [Phys. Solid State 49 (2), 371 (2007)].Google Scholar
  13. 13.
    A. A. Zolotukhin, A. N. Obraztsov, A. O. Ustinov, and A. P. Volkov, Zh. Éksp. Teor. Fiz. 124(6), 1291 (2003) [JETP 97 (6), 1154 (2003)].Google Scholar
  14. 14.
    A. N. Obraztsov, E. A. Obraztova, A. V. Tyurnina, and A. A. Zolotukhin, Carbon 45, 2017 (2007).CrossRefGoogle Scholar
  15. 15.
    T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghemi, and T. Thio, Nature (London) 382, 54 (1996).CrossRefADSGoogle Scholar
  16. 16.
    H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications (Noyes, Park Ridge, NJ, United States, 1993).Google Scholar
  17. 17.
    T. W. Ebbesen and T. Takada, Carbon 33, 973 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. A. Nyapshaev
    • 1
  • I. V. Makarenko
    • 1
  • A. N. Titkov
    • 1
  • A. V. Tyurnina
    • 2
  • A. N. Obraztsov
    • 2
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations