Physics of the Solid State

, Volume 51, Issue 5, pp 1041–1053 | Cite as

Charge-transfer processes in radical ion molecular conductors κ-(BEDT-TTF)2Cu[N(CN)2]BrxCl1 − x: The superconductor (x = 0.9) and the conductor with the metal-insulator transition (x = 0)

  • R. M. Vlasova
  • N. V. Drichko
  • B. V. Petrov
  • V. N. Semkin
  • D. Faltermeier
  • J. Barz
  • M. Dumm
  • M. Dressel
  • C. Mezier
  • P. Batail
Low-Dimensional Systems and Surface Physics

Abstract

Optical spectral investigations of low-dimensional organic molecular conductors κ-(BEDT-TTF)2Cu[N(CN)2]BrxCl1 − x with x = 0.9 (the superconductor with Tc = 11.3 K) and x = 0 (the metal with the metal-insulator transition at T < 50 K) are performed in the range 50–6000 cm−1 (6 meV–0.74 eV) at temperatures from 300 to 20 K. The optical conductivity spectra are quantitatively analyzed in terms of the proposed model, according to which the charge transfer involves two types of charge carriers, i.e., electrons (holes) localized on clusters (dimers and tetramers formed by BEDT-TTF molecules) and quasi-free charge carriers, with the use of the tetramer “cluster“ model based on the Hubbard Hamiltonian for correlated electrons and the Drude model for quasi-free charge carriers. Physical parameters of the model, such as the energy of Coulomb repulsion between two electrons (holes) in one molecule, the transfer integrals between molecules inside the dimer and between dimers, and the electron-molecular vibration coupling constants, are determined. The anisotropy of the spectra in the conducting plane is explained. The inference is made that only electrons localized on clusters couple with intramolecular vibrations.

PACS numbers

74.70.Kn 78.20.Bh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. McKenzie, Science (Washington) 278, 821 (1997).CrossRefADSGoogle Scholar
  2. 2.
    H. Seo, C. Hotta, and H. Fukuyama, Chem. Rev. (Washington, DC) 104, 5005 (2004).Google Scholar
  3. 3.
    M. Dressel and N. Drichko, Chem. Rev. (Washington, DC) 104, 5689 (2004).Google Scholar
  4. 4.
    K. Kornelsen, J. E. Eldridge, H. H. Wang, H. A. Charlier, and J. M. Williams, Solid State Commun. 81, 343 (1992).CrossRefADSGoogle Scholar
  5. 5.
    J. E. Eldridge, K. Kornelsen, H. H. Wang, J. M. Williams, A. V. Strieby Crouch, and D. M. Watkins, Solid State Commun. 79, 583 (1991).CrossRefADSGoogle Scholar
  6. 6.
    O. O. Drozdova, V. N. Semkin, R. M. Vlasova, N. D. Kushch, and E. B. Yagubskii, Synth. Met. 64(1), 17 (1994).CrossRefGoogle Scholar
  7. 7.
    R. M. Vlasova, O. O. Drozdova, V. N. Semkin, N. D. Kushch, and É. B. Yagubskiĭ, Fiz. Tverd. Tela (St. Petersburg) 38(3), 869 (1996) [Phys. Solid State 38 (3), 481 (1996)].Google Scholar
  8. 8.
    R. M. Vlasova, O. O. Drozdova, V. N. Semkin, N. D. Kushch, E. I. Zhilyaeva, R. N. Lyubovskaya, and É. B. Yagubskiĭ, Fiz. Tverd. Tela (St. Petersburg) 41(5), 897 (1999) [Phys. Solid State 41 (5), 814 (1999)].Google Scholar
  9. 9.
    M. Menegetti, R. Bozio, and C. Pecile, J. Phys. (Paris) 47, 1377 (1986).Google Scholar
  10. 10.
    M. G. Kaplunov, E. B. Yagubskii, L. P. Rosenberg, and Yu. G. Borodko, Phys. Status Solidi A 89, 509 (1985).CrossRefGoogle Scholar
  11. 11.
    M. G. Kaplunov, R. N. Lyubovkaya, M. Z. Aldoshina, and Yu. G. Borodko, Phys. Status Solidi A 104, 833 (1987).CrossRefGoogle Scholar
  12. 12.
    J. E. Eldridge, Y. Xie, Hau H. Wang, J. M. Williams, A. M. Kini, and J. A. Schlueter, Spectrochim. Acta, Part A 52, 45 (1996); Spectrochim. Acta, Part A 51, 947 (1995).CrossRefGoogle Scholar
  13. 13.
    T. Ishiguro and K. Yamaji, Organic Superconductors: Springer Series in Solid-State Sciences (Springer, Berlin, 1990), p. 88.Google Scholar
  14. 14.
    A. M. Kini, U. Geiser, H. H. Wang, K. D. Carlson, J. M. Williams, W. K. Kwok, K. G. Vandervoort, J. E. Thompson, D. Stupka, D. Jung, and M.-H. Whngbo, Inorg. Chem. 29, 2555 (1990).CrossRefGoogle Scholar
  15. 15.
    H. H. Wang, A. M. Kini, L. K. Montgomery, U. Geiser, K. D. Karlson, J. M. Willias, J. E. Thompson, D. M. Watkins, and W. K. Kwok, Chem. Mater. 2, 482 (1990).CrossRefGoogle Scholar
  16. 16.
    J. M. Williams, A. M. Kini, H. H. Wang, K. D. Carlson, U. Geiser, L. K. Montgomery, G. J. Pyrka, D. M. Watkins, L. M. Kommers, S. J. Boryschuk, A. V. Strieby Crouch, W. K. Kwok, J. E. Schirber, D. L. Overmyer, D. Jung, and M.-H. Whangbo, Inorg. Chem. 29, 3272 (1990).CrossRefGoogle Scholar
  17. 17.
    N. D. Kushch, L. I. Buravov, A. G. Khomenko, E. B. Yagubskii, L. D. Rozenberg, and R. P. Shibaeva, Synth. Met. 53, 155 (1993).CrossRefGoogle Scholar
  18. 18.
    U. Geiser, A. Schultz, H. H. Wang, D. M. Watkins, D. L. Stupka, J. M. Williams, J. E. Schirber, D. L. Overmyer, D. Jung, J. J. Novoa, and M.-H. Whagbo, Physica C (Amsterdam) 174, 475 (1991).ADSGoogle Scholar
  19. 19.
    J. Merino and R. H. McKenzie, Phys. Rev. B: Condens. Matter 61(12), 7996 (2000).ADSGoogle Scholar
  20. 20.
    B. V. Petrov, V. N. Semkin, R. M. Vlasova, V. M. Yartsev, N. D. Kushch, and A. Graja, in Molecular Low-Dimensional and Nanostructured Materials for Advanced Applications, Ed. by A. Graja, B. R. Bulka, and F. Kajzar (Kluwer, Dordrecht, The Netherlands, 2001), p. 259.Google Scholar
  21. 21.
    V. M. Yartsev, O. O. Drozdova, V. N. Semkin, and R. M. Vlasova, J. Phys. (Paris) 6, 1673 (1996).Google Scholar
  22. 22.
    M. J. Rice, Phys. Rev. Lett. 37(1), 36 (1976).CrossRefADSGoogle Scholar
  23. 23.
    D. Faltermeier, J. Barz, M. Dumm, M. Dressel, N. Drichko, B. Petrov, V. Semkin, R. Vlasova, C. Meźière, and P. Batail, Phys. Rev. B: Condens. Matter 76, 165113 (2007).Google Scholar
  24. 24.
    J. Merino, M. Dumm, N. Drichko, M. Dressel, and R. H. McKenzie, Phys. Rev. Lett. 100, 086404 (2008).Google Scholar
  25. 25.
    C. C. Homes, M. Reedyk, D. A. Cradles, and T. Timusk, Appl. Opt. 32, 2976 (1993).CrossRefADSGoogle Scholar
  26. 26.
    V. M. Yartsev, in Materials and Measurements in Molecular Electronics, Ed. by K. Kajimura and S. Kuroda (Springer, Tokyo, 1996), p. 189.Google Scholar
  27. 27.
    R. M. Vlasova, N. V. Drichko, B. V. Petrov, V. N. Semkin, E. I. Zhilyaeva, R. N. Lyubovskaya, I. Olejniczak, A. Kobayashi, and H. Kobayashi, Fiz. Tverd. Tela (St. Petersburg) 46(11), 1921 (2004) [Phys. Solid State 46 (11), 1985 (2004)].Google Scholar
  28. 28.
    P. Delhaes and V. M. Yartsev, in Spectroscopy of New Materials, Ed. by R. J. H. Clark and R. E. Hester (Wiley, Chichester, 1993), p. 199.Google Scholar
  29. 29.
    V. M. Yartsev, O. O. Drosdova, V. N. Semkin, R. M. Vlasova, and R. N. Lyubovskaya, Phys. Status Solidi B 209, 471 (1998).CrossRefADSGoogle Scholar
  30. 30.
    T. Mori, H. Mori, and S. Tanaka, Bull. Chem. Soc. Jpn. 72, 179 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • R. M. Vlasova
    • 1
  • N. V. Drichko
    • 1
    • 2
  • B. V. Petrov
    • 1
  • V. N. Semkin
    • 1
  • D. Faltermeier
    • 2
  • J. Barz
    • 2
  • M. Dumm
    • 2
  • M. Dressel
    • 2
  • C. Mezier
    • 3
  • P. Batail
    • 3
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Physikalisches InstitutUniversität StuttgartStuttgartGermany
  3. 3.Laboratoire CIMIFRE 2447 CNRS-Universite d’Angers, Batiment K, UFR SciencesAngersFrance

Personalised recommendations