Physics of the Solid State

, Volume 51, Issue 2, pp 362–372 | Cite as

Ab initio calculations of phonon spectra in ATiO3 perovskite crystals (A = Ca, Sr, Ba, Ra, Cd, Zn, Mg, Ge, Sn, Pb)

Lattice Dynamics and Phase Transitions

Abstract

First-principles calculations of phonon spectra based on the density functional theory are carried out for calcium, strontium, barium, radium, cadmium, zinc, magnesium, germanium, tin, and lead titanates with a perovskite structure. By analyzing unstable modes in the phonon spectrum, the possible types of lattice distortion are determined and the energies of the corresponding phases are calculated. From analyzing the phonon spectra, force constants, and eigenvectors of TO phonons, a conclusion is drawn concerning the nature of ferroelectric phenomena in the crystals studied. It is shown that the main factors determining the possible appearance of off-center atoms in the A position are the geometric size and electronic configuration of these atoms.

PACS numbers

61.50.Ah 63.20.Dj 77.84.Dy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Cohen and H. Krakauer, Phys. Rev. B: Condens. Matter 42, 6416 (1990).ADSGoogle Scholar
  2. 2.
    R. E. Cohen, Nature (London) 358, 136 (1992).CrossRefADSGoogle Scholar
  3. 3.
    W. Zhong, R. D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett. 72, 3618 (1994).CrossRefADSGoogle Scholar
  4. 4.
    R. D. King-Smith and D. Vanderbilt, Phys. Rev. B: Condens. Matter 49, 5828 (1994).ADSGoogle Scholar
  5. 5.
    R. Yu and H. Krakauer, Phys. Rev. Lett. 74, 4067 (1995).CrossRefADSGoogle Scholar
  6. 6.
    C. LaSota, C.-Z. Wang, R. Yu, and H. Krakauer, Ferroelectrics 194, 109 (1997).CrossRefGoogle Scholar
  7. 7.
    U. V. Waghmare and K. M. Rabe, Phys. Rev. B: Condens. Matter 55, 6161 (1997).ADSGoogle Scholar
  8. 8.
    Ph. Ghosez, X. Gonze, and J.-P. Michenaud, Ferroelectrics 206–207, 205 (1998).CrossRefGoogle Scholar
  9. 9.
    Ph. Ghosez, E. Cockayne, U. V. Waghmare, and K. M. Rabe, Phys. Rev. B: Condens. Matter 60, 836 (1999).ADSGoogle Scholar
  10. 10.
    S. V. Halilov, M. Fornari, and D. J. Singh, Appl. Phys. Lett. 81, 3443 (2002).CrossRefADSGoogle Scholar
  11. 11.
    O. E. Kvyatkovskiĭ, Fiz. Tverd. Tela (St. Petersburg) 44(6), 1087 (2002) [Phys. Solid State 44 (6), 1135 (2002)].Google Scholar
  12. 12.
    V. V. Lemanov, in Defects and Surface-Induced Effects in Advanced Perovskites, Ed. by G. Borstel, A. Krumins, and D. Millers (Kluwer, Dordrecht, The Netherlands, 2000), p. 329.Google Scholar
  13. 13.
    E. Cockayne and B. P. Burton, Phys. Rev. B: Condens. Matter 62, 3735 (2000).ADSGoogle Scholar
  14. 14.
    K. Parlinski, Y. Kawazoe, and Y. Waseda, J. Chem. Phys. 114, 2395 (2001).CrossRefADSGoogle Scholar
  15. 15.
    X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D. C. Allan, Comput. Mater. Sci. 25, 478 (2002).CrossRefGoogle Scholar
  16. 16.
    J. P. Perdew and A. Zunger, Phys. Rev. B: Condens. Matter 23, 5048 (1981).ADSGoogle Scholar
  17. 17.
    A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, Phys. Rev. B: Condens. Matter 41, 1227 (1990).ADSGoogle Scholar
  18. 18.
    N. J. Ramer and A. M. Rappe, Phys. Rev. B: Condens. Matter 59, 12471 (1999).ADSGoogle Scholar
  19. 19.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 13, 5188 (1976).MathSciNetGoogle Scholar
  20. 20.
    P. Giannozzi, S. Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B: Condens. Matter 43, 7231 (1991).ADSGoogle Scholar
  21. 21.
    X. Gonze, Phys. Rev. B: Condens. Matter 55, 10337 (1997).ADSGoogle Scholar
  22. 22.
    X. Gonze and C. Lee, Phys. Rev. B: Condens. Matter 55, 10355 (1997).ADSGoogle Scholar
  23. 23.
    D. R. Hamann, X. Wu, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B: Condens. Matter 71, 035117 (2005).Google Scholar
  24. 24.
    X. Gonze, J.-C. Charlier, D. C. Allan, and M. P. Teter, Phys. Rev. B: Condens. Matter 50, 13035 (1994).Google Scholar
  25. 25.
    Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology—New Series: Group III (Springer, Berlin, 1971), Vol. 6.Google Scholar
  26. 26.
    R. D. King-Smith and D. Vanderbilt, Phys. Rev. B: Condens. Matter 47, 1651 (1993).ADSGoogle Scholar
  27. 27.
    J. L. Servoin, Y. Luspin, and F. Gervais, Phys. Rev. B: Condens. Matter 22, 5501 (1980).ADSGoogle Scholar
  28. 28.
    T. Nakamura, Ferroelectrics 137, 65 (1992).Google Scholar
  29. 29.
    R. A. Cowley, Phys. Rev. 134, A981 (1964).CrossRefADSGoogle Scholar
  30. 30.
    G. Fabricius and A. López Garcia, Phys. Rev. B: Condens. Matter 66, 233106 (2002).Google Scholar
  31. 31.
    Y. J. Shan, H. Mori, R. Wang, W. Luan, H. Imoto, M. Itoh, and T. Nakamura, Ferroelectrics 259, 85 (2001).CrossRefGoogle Scholar
  32. 32.
    Y. J. Shan, H. Mori, K. Tezuka, H. Imoto, and M. Itoh, Ferroelectrics 284, 107 (2003).CrossRefGoogle Scholar
  33. 33.
    Y. Konishi, M. Ohsawa, Y. Yonezawa, Y. Tanimura, T. Chikyow, T. Wakisaka, H. Koinuma, A. Miyamoto, M. Kubo, and K. Sasata, Mater. Res. Soc. Symp. Proc. 748, U3.13 (2003).Google Scholar
  34. 34.
    N. Sicron, B. Ravel, Y. Yacoby, E. A. Stern, F. Dogan, and J. J. Rehr, Phys. Rev. B: Condens. Matter 50, 13168 (1994).ADSGoogle Scholar
  35. 35.
    V. Shuvaeva, Y. Azuma, K. Yagi, H. Terauchi, R. Vedrinski, V. Komarov, and H. Kasatani, Phys. Rev. B: Condens. Matter 62, 2969 (2000).ADSGoogle Scholar
  36. 36.
    A. A. Veligzhanin, A. I. Lebedev, V. V. Mischenko, I. A. Sluchinskaya, and A. A. Chernyshov, in Abstract Book of the Fifth International Seminar on Ferroelastic Physics, Voronezh, Russia, 2006 (Voronezh, 2006), p. 52.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations