Advertisement

Physics of the Solid State

, Volume 50, Issue 9, pp 1789–1794 | Cite as

Self-quenching effects of excitons in CaWO4 under high density XUV free electron laser excitation

  • S. Vielhauer
  • V. Babin
  • M. De Grazia
  • E. Feldbach
  • M. Kirm
  • V. Nagirnyi
  • A. Vasil’ev
Proceedings of the XIII Feofilov Symposium “Spectroscopy of Crystals Doped by Rare-Earth and Transition-Metal Ions” (Irkutsk, July 9–13, 2007)

Abstract

Using free electron laser excitation in the XUV range, CaWO4 samples were exposed to ultrashort intense photon pulses (photon energy, 89.84 eV; average pulse energy, 10 μJ; pulse length, 25 fs), and their luminescence was studied with time-resolved spectroscopy. In the decay curves measured in the temperature range 8–300 K, a nonexponential emission decay with shortening of the lifetimes over the first few microseconds was observed, depending on the excitation density. Using a model for dipole-dipole interaction of excitons under nonuniform excitation densities, the structure of the decay curves can be reproduced in good agreement with the experimental data, and parameters for the initial exciton interaction can be calculated.

PACS numbers

41.60.Cr 52.59.Rz 61.80.Ba 61.82.Ms 71.35.Aa 78.47.+p 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Ayvazyan, N. Baboi, J. Bähr, V. Balandin, B. Beutner, A. Brandt, I. Bohnet, A. Bolzmann, R. Brinkmann, O. I. Brovko, J. P. Carneiro, S. Casalbuoni, M. Castellano, P. Castro, L. Catani, E. Chiadroni, S. Choroba, A. Cianchi, H. Delsim-Hashemi, G. Di Pirro, M. Dohlus, S. Düsterer, H. T. Edwards, B. Faatz, A. A. Fateev, J. Feldhaus, K. Flöttmann, J. Frisch, L. Fröhlich, T. Garvey, U. Gensch, N. Golubeva, H.-J. Grabosch, B. Grigoryan, O. Grimm, U. Hahn, J. H. Han, M. V. Hartrott, K. Honkavaara, M. Hüning, R. Ischebeck, E. Jaeschke, M. Jablonka, R. Kammering, V. Katalev, B. Keitel, S. Khodyachykh, Y. Kim, V. Kocharyan, M. Körfer, M. Kollewe, D. Kostin, D. Kramer, M. Krassilnikov, G. Kube, L. Lilje, T. Limberg, D. Lipka, F. Löhl, M. Luong, C. Magne, J. Menzel, P. Michelato, V. Miltchev, M. Minty, W. D. Möller, L. Monaco, W. Müller, M. Nagl, O. Napoly, P. Nicolosi, D. Nölle, T. Nuñez, A. Oppelt, C. Pagani, R. Paparella, B. Petersen, B. Petrosyan, J. Pflüger, P. Piot, E. Plönjes, L. Poletto, D. Proch, D. Pugachov, K. Rehlich, D. Richter, S. Riemann, M. Ross, J. Rossbach, M. Sachwitz, E. L. Saldin, W. Sandner, H. Schlarb, B. Schmidt, M. Schmitz, P. Schmüser, J. R. Schneider, E. A. Schneidmiller, H.-J. Schreiber, S. Schreiber, A. V. Shabunov, D. Sertore, S. Setzer, S. Simrock, E. Sombrowski, L. Staykov, B. Steffen, F. Stephan, F. Stulle, K. P. Sytchev, H. Thom, K. Tiedtke, M. Tischer, R. Treusch, D. Trines, I. Tsakov, A. Vardanyan, R. Wanzenberg, T. Weiland, H. Weise, M. Wendt, I. Will, A. Winter, K. Wittenburg, M. V. Yurkov, I. Zagorodnov, P. Zambolin, and K. Zapfe, Eur. Phys. J. D 37, 297 (2006).CrossRefADSGoogle Scholar
  2. 2.
    N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, and J. Krzywinski, Appl. Phys. Lett. 89, 241 909 (2006).Google Scholar
  3. 3.
    R. Sobierajski, J. Krzywinski, A. Andrejczuk, U. Hahn, R. Treusch, M. Jurek, D. Klinger, R. Nietubyč, J. B. Pełka, H. Reniewicz, M. Sikora, and W. Sobala, Rev. Sci. Instrum. 76, 013 909/1 (2005).Google Scholar
  4. 4.
    R. Treusch, The Hamburg Synchrotron Radiation Laboratory (HASYLAB) 2005 Annual Report, p. 159 (2005).Google Scholar
  5. 5.
    M. Kirm, A. Andrejczuk, J. Krzywinski, and R. Sobierajski, Phys. Status Solidi C 2, 649 (2005).CrossRefADSGoogle Scholar
  6. 6.
    V. B. Mikhailik, H. Kraus, D. Wahl, M. Itoh, M. Koike, and I. K. Bailiff, Phys. Rev. B: Condens. Matter 69, 205 110 (2004).Google Scholar
  7. 7.
    M. Nikl, Phys. Status Solidi A 178, 595 (2000).CrossRefADSGoogle Scholar
  8. 8.
    V. Mürk, M. Nikl, E. Mihoková, and K. Nitsch, J. Phys.: Condens. Matter. 9, 249 (1997).CrossRefADSGoogle Scholar
  9. 9.
    N. Fedorov, V. Nagirnyi, A. Vasil’ev, A. Belsky, B. Carré, E. Feldbach, J. Gaudin, G. Geoffroy, S. Guizard, M. de Grazia, M. Kirm, P. Martin, and H. Merdji, J. Phys. IV 138, 251 (2006).CrossRefGoogle Scholar
  10. 10.
    M. J. Treadaway and R. C. Powell, J. Chem. Phys. 61, 4003 (1974).CrossRefADSGoogle Scholar
  11. 11.
    D. J. Robbins, J. Electrochem. Soc. 127, 2694 (1980).CrossRefGoogle Scholar
  12. 12.
    V. Nagirnyi et al., in Proceedings of the 8th International Conference on Inorganic Scintillators and Their Use in Scientific and Industrial Applications, Alushta, Ukraine (National Academy of Sciences of Ukraine, Kharkov, Ukraine, 2006), p. 36.Google Scholar
  13. 13.
    V. Nagirnyi, A. Kotlov, L. Jönsson, M. Kirm, and A. Lushchik, Nucl. Instrum Methods Phys. Res., Sect. A 537, 61 (2005).CrossRefGoogle Scholar
  14. 14.
    A. Belsky, B. Carré, N. Fedorov, E. Feldbach, J. Gaudin, S. Guizard, G. Geoffroy, M. de Grazia, M. Kirm, P. Martin, H. Merdji, V. Nagirnyi, and G. Petite, J. Phys. IV 138, 155 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • S. Vielhauer
    • 1
  • V. Babin
    • 1
  • M. De Grazia
    • 2
  • E. Feldbach
    • 1
  • M. Kirm
    • 1
  • V. Nagirnyi
    • 1
  • A. Vasil’ev
    • 3
  1. 1.Institute of PhysicsUniversity of TartuTartuEstonia
  2. 2.CEA/DSM/DRECAM/Service des Photons, Atomes et MoléculesCEA-SACLAYGif-sur-YvetteFrance
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations