Peculiarities of antiferromagnetic ordering in orthorhombic LiMnO2

  • D. G. Kellerman
  • N. A. Zhuravlev
  • S. V. Verkhovskiĭ
  • E. Yu. Medvedev
  • A. V. Korolev
  • J. E. Medvedeva
Magnetism and Ferroelectricity


Data on the antiferromagnetic ordering in orthorhombic lithium manganite LiMnO2 are obtained from magnetic-susceptibility, calorimetry, and nuclear magnetic resonance studies. The minimal hysteresis and the absence of jumps in the temperature dependences of the sublattice magnetization M(T) and the magnetic susceptibility near T N indicate that the ordering occurs through a continuous second-order phase transition. Within the critical temperature range, the M(TT N) variation is satisfactorily described by a power-law dependence with a critical exponent β = 0.25(4), which is substantially smaller than that predicted for 3D magnetic systems with isotropic Heisenberg exchange. The band structure of orthorhombic LiMnO2 is calculated using the LMTO-ASA method. Taking into account the spin states of manganese ions, an adequate pattern is obtained for the density-of-states distribution with an energy gap near the Fermi level (∼0.7 eV), which is in agreement with the measured electrical parameters of lithium manganite. The calculations demonstrate that the exchange interactions between Mn3+ ions leading to antiferromagnetic ordering are significantly anisotropic. It is found that small paramagnetic regions persist in the manganite below the Néel temperature, and it is concluded that the reason for this is partial structural disordering of LiMnO2. As a result, a certain fraction of the manganese positions is occupied by lithium ions (LiMn) and vise versa (MnLi). These defects are not involved in the formation of the ordered magnetic structure and compose a paramagnetic fraction.

PACS numbers

71.20.Ps 75.30.Et 75.40.Cx 75.47.Lx 


  1. 1.
    T. A. Hewston and B. L. Chamberland, J. Phys. Chem. Solids 48, 97 (1987).CrossRefADSGoogle Scholar
  2. 2.
    D. G. Kellerman, Usp. Khim. 70, 874 (2001).Google Scholar
  3. 3.
    P. F. Bongers, PhD Thesis (The University of Leiden, The Netherlands, 1957).Google Scholar
  4. 4.
    J. E. Greedan, N. P. Raju, and I. J. Davidson, J. Solid State Chem. 128, 209 (1997).CrossRefADSGoogle Scholar
  5. 5.
    D. G. Kellerman, J. E. Medvedeva, V. S. Gorshkov, A. I. Kurbakov, V. G. Zubkov, A. P. Tyutyunnik, and V. A. Trunov, Solid State Sci. 9, 196 (2007).CrossRefADSGoogle Scholar
  6. 6.
    E. V. Zabolotskaya, L. V. Zolotukhina, V. S. Gorshkov, V. V. Karelina, and D. G. Kellerman, Zh. Neorg. Khim. 46(8), 1358 (2001) [Russ. J. Inorg. Chem. 46 (8), 1224 (2001)].Google Scholar
  7. 7.
    G. Ditrich and R. Hoppe, Z. Anorg. Allg. Chem. 368, 262 (1969).CrossRefGoogle Scholar
  8. 8.
    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).CrossRefADSGoogle Scholar
  9. 9.
    A. I. Lichtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B: Condens. Matter 52, R5467 (1995).ADSGoogle Scholar
  10. 10.
    D. G. Kellerman, V. S. Gorshkov, V. G. Zubkov, V. A. Perelyaev, V. R. Galakhov, E. Z. Kurmaev, S. Uhlenbrock, and M. Neumann, Zh. Neorg. Khim. 42(6), 1012 (1997) [Russ. J. Inorg. Chem. 42 (6), 914 (1997)].Google Scholar
  11. 11.
    Yu. V. Rakitin and V. T. Kalinnikov, Modern Magnetochemistry (Nauka, Leningrad, 1984) [in Russian].Google Scholar
  12. 12.
    R. L. Martin, in Physical Methods in Advanced Inorganic Chemistry, Ed. by H. A. O. Hill and P. Day (Interscience, London, 1968; Mir, Moscow, 1970).Google Scholar
  13. 13.
    M. E. Fisher, Proc. R. Soc. London, Ser. A 254, 66 (1960).ADSCrossRefGoogle Scholar
  14. 14.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961; Inostrannaya Literatura, Moscow, 1963).Google Scholar
  15. 15.
    G. C. Carter, L. H. Bennett, and D. J. Kahan, in Progress in Material Science, Ed. by B. Chalmers, J. W. Christian, and T. B. Massalski, (Pergamon, Oxford, 1977), Vol. 20, Part 1.Google Scholar
  16. 16.
    V. S. Gorshkov, V. V. Karelina, and D. G. Kellerman, Abstracts of Papers of the All-Russian Conference “Chemistry of the Solid State and Functional Materials,” Yekaterinburg, Russia, 2000 (Yekaterinburg, 2000), p. 108 [in Russian].Google Scholar
  17. 17.
    N. Shukla and P. Rajendra, J. Phys. Chem. Solids 67, 1731 (2006).CrossRefADSGoogle Scholar
  18. 18.
    V. R. Galakhov, M. A. Korotin, N. A. Ovechkina, E. Z. Kurmaev, V. S. Gorshkov, D. G. Kellerman, S. Bartkowski, and M. Neumann, Eur. Phys. J. B 14, 281 (2000).CrossRefADSGoogle Scholar
  19. 19.
    J. S. Smart, Effective Field Theories of Magnetism (Saunders, Philadelphia, 1966; Mir, Moscow, 1968).Google Scholar
  20. 20.
    R. P. Singh, Z. C. Tao, and M. Singh, Phys. Rev. B: Condens. Matter 46, 1244 (1992).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • D. G. Kellerman
    • 1
  • N. A. Zhuravlev
    • 1
  • S. V. Verkhovskiĭ
    • 2
  • E. Yu. Medvedev
    • 2
  • A. V. Korolev
    • 2
  • J. E. Medvedeva
    • 3
  1. 1.Institute of Solid State Chemistry, Ural DivisionRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia
  3. 3.Department of PhysicsUniversity of MissouriRollaUSA

Personalised recommendations