Physics of the Solid State

, Volume 49, Issue 10, pp 2010–2014 | Cite as

Control of the motion of nanoelectromechanical systems based on carbon nanotubes

  • O. V. Ershova
  • Yu. E. Lozovik
  • A. M. Popov
  • O. N. Bubel’
  • N. A. Poklonskiĭ
  • E. F. Kislyakov
Fullerenes and Atomic Clusters

Abstract

A new method is proposed for controlling the motion of nanoelectromechanical systems based on carbon nanotubes. In this method, a single-walled nanotube acquires an electric dipole moment owing to the chemical adsorption of atoms or molecules at open ends of the nanotube and, then, the electric dipole moment thus induced can be set in motion under the effect of a nonuniform electric field. The electric dipole moments of chemically modified nanotubes are calculated for the first time. The possibility of controlling the motion of nanotube-based nanoelectromechanical systems with the proposed method is demonstrated using a gigahertz oscillator as an example. The operating characteristics of the gigahertz oscillator and the controlling electric field are calculated.

PACS numbers

61.46.Fg 85.85.+j 87.80.Mj 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science (Washington) 287, 637 (2000).CrossRefADSGoogle Scholar
  2. 2.
    M. F. Yu, B. I. Yakobson, and R. S. Ruoff, J. Phys. Chem. B 104, 8764 (2000).CrossRefGoogle Scholar
  3. 3.
    J. Cumings and A. Zettl, Science (Washington) 289, 602 (2000).CrossRefADSGoogle Scholar
  4. 4.
    S. Ijima, Nature (London) 354, 56 (1991).CrossRefADSGoogle Scholar
  5. 5.
    M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature (London) 381, 678 (1996).CrossRefADSGoogle Scholar
  6. 6.
    E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science (Washington) 277, 1971 (1997).CrossRefGoogle Scholar
  7. 7.
    R. E. Tuzun, D. W. Noid, and B. G. Sumpter, Nanotechnology 6, 52 (1995).CrossRefADSGoogle Scholar
  8. 8.
    D. Srivastava, Nanotechnology 8, 186 (1997).CrossRefADSGoogle Scholar
  9. 9.
    L. Forro, Science (Washington) 289, 560 (2000).CrossRefGoogle Scholar
  10. 10.
    Q. Zheng and Q. Jiang. Phys. Rev. Lett. 88, 045 503 (2002).Google Scholar
  11. 11.
    Q. Zheng, J. Z. Liu, and Q. Jiang, Phys. Rev. B: Condens. Matter 65, 245 409 (2002).Google Scholar
  12. 12.
    Z. C. Tu and X. Hu, Phys. Rev. B: Condens. Matter 72, 033 404 (2005).Google Scholar
  13. 13.
    L. Maslov, Nanotechnology 17, 2475 (2006).CrossRefADSGoogle Scholar
  14. 14.
    R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett. 348, 187 (2001).CrossRefGoogle Scholar
  15. 15.
    Yu. E. Lozovik, A. V. Minogin, and A. M. Popov, Phys. Lett. A 313, 112 (2003).CrossRefADSGoogle Scholar
  16. 16.
    Yu. E. Lozovik, A. V. Minogin, and A. M. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 77(11), 759 (2003) [JETP Lett. 77 (11), 631 (2003)].Google Scholar
  17. 17.
    Yu. E. Lozovik and A. M. Popov, Fullerenes, Nanotubes, Carbon Nanostruct. 12, 463 (2004).CrossRefGoogle Scholar
  18. 18.
    Yu. E. Lozovik, A. G. Nikolaev, and A. M. Popov, Zh. Éksp. Teor. Fiz. 130(3), 516 (2006) [JETP 103 (3), 449 (2006)].Google Scholar
  19. 19.
    A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, Nature (London) 424, 408 (2003).CrossRefADSGoogle Scholar
  20. 20.
    B. Bourlon, D. C. Glatti, C. Miko, L. Forro, and A. Bachtold, Nano Lett. 4, 709 (2004).CrossRefGoogle Scholar
  21. 21.
    S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas, and D. S. Galvao, Nanotechnology 15, S184 (2004).CrossRefADSGoogle Scholar
  22. 22.
    J. W. Kang and H. J. Hwang, J. Appl. Phys. 96, 3900 (2004).CrossRefADSGoogle Scholar
  23. 23.
    S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, and S. Iijima, Chem. Phys. Lett. 337, 48 (2001).CrossRefGoogle Scholar
  24. 24.
    J. W. Kang, K. O. Song, O. K. Kwon, and H. J. Hwang, Nanotechnology 16, 2670 (2005).CrossRefADSGoogle Scholar
  25. 25.
    J. J. P. Stewart, J. Comput. Chem. 10, 209 (1989).CrossRefGoogle Scholar
  26. 26.
    J. L. Rivera, C. McCabe, and P.T. Cummings, Nano Lett. 3, 1001 (2003).CrossRefGoogle Scholar
  27. 27.
    J. L. Rivera, C. McCabe, and P. T. Cummings, Nanotechnology 16, 186 (2005).CrossRefADSGoogle Scholar
  28. 28.
    S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas, and D. S. Galvao, Phys. Rev. Lett. 90, 055 504 (2003).Google Scholar
  29. 29.
    W. Guo, Y. Guo, H. Gao, Q. Zheng, and W. Zhong, Phys. Rev. Lett. 91, 125 501 (2003).Google Scholar
  30. 30.
    J. Servantie and P. Gaspard, Phys. Rev. Lett. 91, 185 503 (2003).Google Scholar
  31. 31.
    Y. Zhao, C.-C. Ma, G. Chen, and Q. Jiang, Phys. Rev. Lett. 91, 175 504 (2003).Google Scholar
  32. 32.
    C.-C. Ma, Y. Zhao, Y.-C. Yam, G. Chen, and Q. Jiang, Nanotechnology 16, 1253 (2005).CrossRefADSGoogle Scholar
  33. 33.
    P. Tangney, S. G. Lourie, and M. L. Cohen, Phys. Rev. Lett. 93, 065 503 (2004).Google Scholar
  34. 34.
    E. Bichoutskaia, M. I. Heggie, A. M. Popov, and Yu. E. Lozovik, Phys. Rev. B: Condens. Matter 73, 045 435 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • O. V. Ershova
    • 1
  • Yu. E. Lozovik
    • 2
  • A. M. Popov
    • 2
  • O. N. Bubel’
    • 3
  • N. A. Poklonskiĭ
    • 3
  • E. F. Kislyakov
    • 3
  1. 1.Moscow Institute of Physics and Technology, Institutskiĭ per. 9Dolgoprudnyĭ Moscow oblastRussia
  2. 2.Institute of SpectroscopyRussian Academy of SciencesTroitsk, Moscow oblastRussia
  3. 3.Belarussian State UniversityMinskBelarus

Personalised recommendations