Physics of the Solid State

, Volume 49, Issue 6, pp 1175–1183 | Cite as

Exciton and intracenter radiative recombination in ZnMnTe and CdMnTe quantum wells with optically active manganese ions

  • V. F. Agekyan
  • I. Akai
  • N. N. Vasil’ev
  • T. Karasawa
  • G. Karczewski
  • A. Yu. Serov
  • N. G. Filosofov
Low-Dimensional Systems and Surface Physics

Abstract

The emission spectra of Zn1−xMnxTe/Zn0.6Mg0.4Te and Cd1−xMnxTe/Cd0.5Mg0.5Te quantum-well structures with different manganese concentrations and quantum-well widths are studied at excitation power densities ranging from 105 to 107 W cm−2. Under strong optical pumping, intracenter luminescence of Mn2+ ions degrades as a result of the interaction of excited managanese ions with high-density excitons. This process is accompanied by a strong broadening of the emission band of quantum-well excitons due to the exciton-exciton interaction and saturation of the exciton ground state. Under pumping at a power density of 105 W cm−2, stimulated emission of quantum-well excitons arises in CdTe/Cd0.5Mg0.5Te. The luminescence kinetics of the quantum-well and barrier excitons is investigated with a high temporal resolution. The effect of the quantum-well width and the managanese concentration on the kinetics and band shape of the Mn2+ intracenter luminescence characterized by the contribution of the manganese interface ions is determined.

PACS numbers

78.55.Et 78.67.De 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Goede and W. Heimbrodt, Phys. Status Solidi B 146, 11 (1988).Google Scholar
  2. 2.
    P. A. Wolff, in Semiconductors and Semimetals, Ed. by J. K. Furdyna and J. Kossut (Academic, London, 1988), Vol. 25.Google Scholar
  3. 3.
    V. F. Agekyan, Fiz. Tverd. Tela (St. Petersburg) 44(10), 1921 (2002) [Phys. Solid State 44 (10), 2013 (2002)].Google Scholar
  4. 4.
    I. Yu, T. Isobe, and M. Senna, J. Chem. Phys. Solids 57, 373 (1996).CrossRefGoogle Scholar
  5. 5.
    M. Tanaka, J. Qi, and Y. Matsumoto, J. Cryst. Growth 214/215, 410 (2000).CrossRefGoogle Scholar
  6. 6.
    A. A. Bol, and A. Meijerink, J. Lumin. 87/89, 315 (2000).CrossRefGoogle Scholar
  7. 7.
    W. Chen, V. F. Agekyan, N. N. Vassiliev, A. Yu. Serov, and N. G. Filosofov, J. Chem. Phys. 123, 1 (2005).Google Scholar
  8. 8.
    V. F. Agekyan, N. N. Vasil’ev, A. Yu. Serov, N. G. Filosofov, and G. Karczewski, Fiz. Tverd. Tela (St. Petersburg) 47(11), 2074 (2005) [Phys. Solid State 47 (11), 2162 (2005)].Google Scholar
  9. 9.
    V. F. Agekyan, N. N. Vasil’ev, A. Yu. Serov, N. G. Filosofov, and V. N. Yakimovich, Fiz. Tverd. Tela (St. Petersburg) 43(9), 1562 (2001) [Phys. Solid State 43 (9), 1626 (2001)].Google Scholar
  10. 10.
    V. F. Agekyan and Fan Zung, Fiz. Tverd. Tela (Leningrad) 30(10), 3150 (1988) [Sov. Phys. Solid State 30 (10), 1785 (1988)].Google Scholar
  11. 11.
    V. F. Agekyan and Fan Zung, Fiz. Tverd. Tela (Leningrad) 30(11), 3444 (1988) [Sov. Phys. Solid State 30 (11), 1976 (1988)].Google Scholar
  12. 12.
    H. Falk, W. Heimbrodt, P. J. Klar, J. Hübner, M. Oestreich, and W. W. Rühle, Phys. Status Solidi B 229, 781 (2002).CrossRefGoogle Scholar
  13. 13.
    K. Shibata, E. Nakayama, I. Souma, A. Murayama, and Y. Oka, Phys. Status Solidi B 229, 73 (2002).CrossRefGoogle Scholar
  14. 14.
    J. Stühler, G. Schaack, M. Dahl, A. Waag, G. Landwehr, K. V. Kavokin, and I. A. Merkulov, J. Cryst. Growth 159, 1001 (1996).CrossRefGoogle Scholar
  15. 15.
    J. Lambe and C. Kikuchi, Phys. Rev. 119, 1256 (1960).CrossRefADSGoogle Scholar
  16. 16.
    J. N. Murrell, S. F. A. Kettle, and J. M. Tedder, Valence Theory (Wiley and Sons, London, 1968; Mir, Moscow, 1968).Google Scholar
  17. 17.
    J. F. MacKay, W. M. Becker, J. Spaek, and U. Debska, Phys. Rev. B: Condens. Matter 42, 1743 (1990).ADSGoogle Scholar
  18. 18.
    H. Schenk, M. Wolf, G. Mackh, U. Zehnder, W. Ossau, A. Waag, G. Landwehr, and A. Schenk, J. Appl. Phys. 79, 8704 (1996).CrossRefADSGoogle Scholar
  19. 19.
    S. Biernacki, M. Kutrowski, G. Karczewski, T. Wojtowich, and J. Kossut, Semicond. Sci. Technol. 11, 48 (1998).CrossRefADSGoogle Scholar
  20. 20.
    E. Müller, W. Gebhardt, and V. Gerhardt, Phys. Status Solidi B 113, 209 (1982).Google Scholar
  21. 21.
    W. Park, T. C. Jones, S. Schön, W. Tong, M. Chaichimansour, B. K. Wagner, and C. J. Sommers, J. Cryst. Growth 214/215, 395 (2000).CrossRefGoogle Scholar
  22. 22.
    V. F. Agekyan, N. N. Vasil’ev, V. I. Konstantinov, A. Yu. Serov, N. G. Filosofov, and V. N. Yakimovich, Fiz. Tverd. Tela (St. Petersburg) 45 (8), 1369 (2003) [Phys. Solid State 45 (8), 1435 (2003)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. F. Agekyan
    • 1
  • I. Akai
    • 2
  • N. N. Vasil’ev
    • 1
  • T. Karasawa
    • 2
  • G. Karczewski
    • 3
  • A. Yu. Serov
    • 1
  • N. G. Filosofov
    • 1
  1. 1.Fock Institute of PhysicsSt. Petersburg State UniversitySt. Petersburg, PeterhofRussia
  2. 2.Osaka City UniversitySugimoto-cho, OsakaJapan
  3. 3.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations