Physics of the Solid State

, Volume 49, Issue 6, pp 1132–1141 | Cite as

Parameters of the potential well of an off-center Ge atom in a GeTe-SnTe solid solution

  • A. I. Lebedev
  • I. A. Sluchinskaya
Magnetism and Ferroelectricity

Abstract

An method is proposed for determining the shape of the three-dimensional multiwell potential of an off-center atom from EXAFS data. The parameters of the potential well of a Ge atom in GeTe and Sn1−xGexTe (x ≥ 0.4) are determined in the classical and quantum-mechanical approximations. The potential-well depth is varied in the interval 20–40 meV depending on the Ge content, which indicates that the phase transition in these crystals is intermediate in character between the displacement and order-disorder transitions. From analyzing the conditions for the applicability of the classical approximation, it follows that quantum effects must be taken into account in determining the parameters of the potential well of an off-center Ge atom in Sn1−xGexTe. Quantum-mechanical calculations show that the energy of the lower level in the vibration spectrum of the Ge atom coincides with the maximum energy in the potential well to within several millielectronvolts. The high probability of tunneling or an over-barrier transition of the off-center atom between the potential-well minima prevents dipole reorientations from being frozen at low temperatures.

PACS numbers

61.10.Ht 61.72.-y 77.84.Bw 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. E. Vugmeister and M. D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990).CrossRefADSGoogle Scholar
  2. 2.
    A. Brause and R. Cowley, Structural Phase Transitions (Taylor and Francis, London, 1981; Mir, Moscow, 1984).Google Scholar
  3. 3.
    B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals (Nauka, Moscow, 1995; Springer, Berlin, 1998).Google Scholar
  4. 4.
    J. N. Bierly, L. Muldawer, and O. Beckman, Acta Metall. 11, 447 (1963).CrossRefGoogle Scholar
  5. 5.
    R. Clarke, Phys. Rev. B: Condens: Matter 18, 4920 (1978).ADSGoogle Scholar
  6. 6.
    I. Hatta and W. Rehwald, J. Phys. C: Solid State Phys. 10, 2075 (1977).CrossRefADSGoogle Scholar
  7. 7.
    W. Rehwald and G. K. Lang, J. Phys. C: Solid State Phys. 8, 3287 (1975).CrossRefADSGoogle Scholar
  8. 8.
    E. F. Steigmeier and G. Harbeke, Solid State Commun. 8, 1275 (1970).CrossRefGoogle Scholar
  9. 9.
    B. A. Bunker, Q. T. Islam, and W.-F. Pong, Physica B (Amsterdam) 158, 578 (1989).ADSGoogle Scholar
  10. 10.
    Q. T. Islam and B. A. Bunker, Phys. Rev. Lett. 59, 2701 (1987).CrossRefADSGoogle Scholar
  11. 11.
    O. Hanske-Petitpierre, Y. Yacoby, J. Mustre de Leon, E. A. Stem, and J. J. Rehr, Phys. Rev. B: Condens. Matter 44, 6700 (1991).ADSGoogle Scholar
  12. 12.
    N. Sicron, B. Ravel, Y. Yacoby, E. A. Stern, F. Dogan, and J. J. Rehr, Phys. Rev. B: Condens. Matter 50, 13168 (1994).ADSGoogle Scholar
  13. 13.
    N. Sicron, Y. Yacoby, E. A. Stern, and F. Dogan, J. Phys. IV 7, 1047 (1997).Google Scholar
  14. 14.
    B. Ravel, E. Cockayne, M. Newville, and K. M. Rabe, Phys. Rev. B: Condens. Matter 60, 14632 (1999).ADSGoogle Scholar
  15. 15.
    V. Shuvaeva, Y. Azuma, K. Yagi, H. Terauchi, R. Vedrinski, V. Komarov, and H. Kasatani, Phys. Rev. B: Condens. Matter 62, 2969 (2000).ADSGoogle Scholar
  16. 16.
    G. Bunker, Nucl. Instrum. Methods Phys. Res. 207, 437 (1983).CrossRefGoogle Scholar
  17. 17.
    P.A. Lee, P.H. Citrin, P. Eisenberger, and B. M. Kincaid, Rev. Mod. Phys. 53, 769 (1981).CrossRefADSGoogle Scholar
  18. 18.
    A. I. Lebedev, I. A. Slichinskaya, V. N. Demin, and I. H. Munro, Phys. Rev. B: Condens. Matter 55, 14770 (1997).ADSGoogle Scholar
  19. 19.
    J. Mustre de Leon, J. J. Rehr, S. I. Zabinsky, and R. C. Albers, Phys. Rev. B: Condens. Matter 44, 4146 (1991).ADSGoogle Scholar
  20. 20.
    M. E. Lines, Phys. Rev. 177, 797 (1969).CrossRefADSGoogle Scholar
  21. 21.
    F. Borsa, U. T. Höchli, J. J. van der Klink, and D. Rytz, Phys. Rev. Lett. 45, 1884 (1980).CrossRefADSGoogle Scholar
  22. 22.
    W. Kleemann, V. Schönknecht, D. Sommer, and D. Rytz, Phys. Rev. Lett. 66, 762 (1991).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. I. Lebedev
    • 1
  • I. A. Sluchinskaya
    • 1
  1. 1.Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations