Physics of the Solid State

, Volume 49, Issue 5, pp 968–975 | Cite as

Spectroscopy of persistent hole burning in the quantum dot-matrix system: Quantum-confined stark effect and electroabsorption

  • S. Yu. Kruchinin
  • A. V. Fedorov
Low-Dimensional Systems and Surface Physics


A theory of persistent spectral hole burning is developed. Within a simple, exactly solvable model (a cubic potential well with infinitely high walls in a uniform electric field), the energy spectrum and the rate of electron-hole pair generation are determined with due regard for the effect of the field induced in this case owing to the spatial separation of electrons and holes. The dependence of the energy spectrum on the field vector orientation relative to the symmetry axes of a quantum dot is studied. An expression describing the shape of the differential spectrum is derived.

PACS numbers

73.21.La 73.22.-f 78.67.-n 61.46.-w 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Naoe, L. G. Zimin, and Y. Masumoto, Phys. Rev. B: Condens. Matter 50, 18200 (1994).Google Scholar
  2. 2.
    Y. Masumoto, T. Kawazoe, and T. Yamamoto, Phys. Rev. B: Condens. Matter 52, 4688 (1995).ADSGoogle Scholar
  3. 3.
    Y. Masumoto, J. Lumin. 70, 386 (1996).CrossRefGoogle Scholar
  4. 4.
    A. V. Fedorov and S. Yu. Kruchinin, Opt. Spektrosk. 97(3), 394 (2004) [Opt. Spectrosc. 97 (3), 394 (2004)].CrossRefGoogle Scholar
  5. 5.
    H. de Vries and D. A. Wiersma, J. Chem. Phys. 72, 1851 (1980).CrossRefADSGoogle Scholar
  6. 6.
    J. Friedrich, J. D. Swalen, and D. Haarer, J. Chem. Phys. 73, 267 (1980).CrossRefGoogle Scholar
  7. 7.
    In-Ja Lee, Bull. Korean Chem. Soc. 21, 267 (2000).Google Scholar
  8. 8.
    S. Yu. Kruchinin and A. V. Fedorov, Opt. Spektrosk. 100(1), 47 (2006) [Opt. Spectrosc. 100 (1), 41 (2006)].CrossRefGoogle Scholar
  9. 9.
    D. A. B. Miller, D. S. Chelma, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. B: Condens. Matter 32, 1043 (1985).ADSGoogle Scholar
  10. 10.
    J. Seufert, M. Obert, M. Scheibner, N. A. Gippius, G. Bacher, A. Forchel, T. Passow, K. Leonardi, and D. Hommel, Appl. Phys. Lett. 79, 1033 (2001).CrossRefADSGoogle Scholar
  11. 11.
    Peng Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, Appl. Phys. Lett. 85, 2791 (2004).CrossRefADSGoogle Scholar
  12. 12.
    S. I. Pokutnyi, L. Jacak, J. Misiewicz, W. Salejda, and G. G. Zegrya, J. Appl. Phys. 96, 1115 (2004).CrossRefADSGoogle Scholar
  13. 13.
    Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology: Semiconductors, Ed. by O. Madelung, M. Schultz, and H. Weiss (Springer, Berlin, 1982), Group 3, Vol. 17a.Google Scholar
  14. 14.
    D. A. B. Miller, D. S. Chelma, and S. Schmitt-Rink, Phys. Rev. B: Condens. Matter 33, 6976 (1986).ADSGoogle Scholar
  15. 15.
    A. S. Davydov, Quantum Mechanics (Nauka, Moscow, 1973; Pergamon, New York, 1976).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • S. Yu. Kruchinin
    • 1
  • A. V. Fedorov
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations