Advertisement

Physics of the Solid State

, Volume 49, Issue 3, pp 478–483 | Cite as

Spectral and luminescence properties of gadolinium gallium garnet epitaxial films doped with terbium

  • N. V. Vasil’eva
  • V. V. Randoshkin
  • V. N. Kolobanov
  • E. B. Kryukova
  • V. V. Mikhaĭlin
  • N. N. Petrovnin
  • V. G. Plotnichenko
  • Yu. N. Pyrkov
  • D. A. Spasskiĭ
  • N. N. Sysoev
Optical Properties

Abstract

Gadolinium gallium garnet single-crystal films containing terbium are grown through liquid-phase epitaxy from a supercooled solution melt in the PbO-B2O3 system. The optical absorption spectra in the wavelength range 0.2–10.0 μm and the luminescence spectra excited by synchrotron radiation with energies in the range 3.5–30.0 eV are investigated at temperatures of 10 and 300 K. It is revealed that the optical absorption spectra contain an absorption band with the maximum at a wavelength λ ≈0.260 μm, which corresponds to the spin-allowed electric dipole transition between the electronic configurations 4f 8(7 F 6) → 4f 7(8 S)5d of the Tb3+ ions. The narrow low-intensity absorption bands attributed to the 4f → 4f transitions from the 7 F 6 ground level to the 7 F 0–5 multiplet levels of the Tb3+ ions are observed in the wavelength range 1.7–10.0 μm. In the luminescence spectra measured at a temperature of 10 K, the highest intensity is observed for a band with the maximum at a wavelength λ ≈ 0.544 μm, which is associated with the 5 D 47 F 5 radiative transition in the Tb3+ ion.

PACS numbers

78.20.Ci 78.40.-q 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Randoshkin, N. V. Vasil’eva, and N. N. Sysoev, Naukoemkie Tekhnol. 5, 44 (2004).Google Scholar
  2. 2.
    Yu. V. Zorenko, I. V. Konstankevich, V. V. Mikhaĭlin, V. N. Kolobanov, and D. A. Spasskiĭ, Opt. Spektrosk. 96(3), 436 (2004) [Opt. Spectrosc. 96 (3), 390 (2004)].CrossRefGoogle Scholar
  3. 3.
    J. M. Robertson and M. W. van Tol, Thin Solid Films 114, 221 (1984).CrossRefGoogle Scholar
  4. 4.
    Elements and Devices Based on the Bubble Magnetic Domains: A Handbook, Ed. by N. N. Evtikhiev and B. N. Naumov (Radio i Svyaz’, Moscow, 1987) [in Russian].Google Scholar
  5. 5.
    V. V. Randoshkin and A. Ya. Chervonenkis, Applied Magneto-Optics (Énergoatomizdat, Moscow, 1990) [in Russian].Google Scholar
  6. 6.
    G. B. Scott and J. L. Page, J. Appl. Phys. 48, 1342 (1977).CrossRefADSGoogle Scholar
  7. 7.
    V. V. Randoshkin, N. V. Vasil’eva, A. V. Vasil’ev, V. G. Plotnichenko, S. V. Lavrishchev, A. M. Saletskiĭ, K. V. Stashun, N. N. Sysoev, and A. N. Churkin, Fiz. Tverd. Tela (St. Petersburg) 43(9), 1594 (2001) [Phys. Solid State 43 (9), 1659 (2001)].Google Scholar
  8. 8.
    V. V. Randoshkin, N. V. Vasil’eva, A. V. Vasil’ev, V. G. Plotnichenko, Yu. N. Pyrkov, A. M. Saletskiĭ, K. V. Stashun, and N. N. Sysoev, Neorg. Mater. 40(1), 1 (2004) [Inorg. Mater. 40 (1), 54 (2004)].CrossRefGoogle Scholar
  9. 9.
    J. A. Koningstein, Phys. Rev. 136, A717 (1964).CrossRefADSGoogle Scholar
  10. 10.
    M. A. Bunuel, L. Lozano, J. P. Chaminade, B. Moine, and B. Jacquier, Opt. Mater. 13, 211 (1999).CrossRefGoogle Scholar
  11. 11.
    V. I. Arbuzov, V. Ya. Grabovskis, N. S. Kovaleva, N. T. Rogulis, and M. N. Tolstoĭ, Opt. Spektrosk. 65(4), 943 (1988) [Opt. Spectrosc. 65 (4), 555 (1988)].Google Scholar
  12. 12.
    M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Yu. N. Pyrkov, and B. I. Galagan, J. Non-Cryst. Solids 326–327, 301 (2003).CrossRefGoogle Scholar
  13. 13.
    E. Sarantopoulou, Z. Kollia, A. C. Cefalas, V. V. Semashko, and R. Yu. Abdulsabirov, A. K. Naumov, and S. L. Korableva, Opt. Commun. 156, 101 (1998).CrossRefADSGoogle Scholar
  14. 14.
    H. Ebendorff-Heidepriem and D. Ehrt, J. Non-Cryst. Solids 248, 247 (1999).CrossRefGoogle Scholar
  15. 15.
    K. S. Thomas, S. Singh, and G. H. Dieke, J. Chem. Phys. 38, 2180 (1963).CrossRefGoogle Scholar
  16. 16.
    J. Qiu, M. Shojiya, R. Kanno, and Y. Kawamoto, Opt. Mater. 13, 319 (1999).CrossRefGoogle Scholar
  17. 17.
    R. Bayerer, J. Heber, and D. Materika, Z. Phys. B: Condens. Matter. 64, 201 (1986).CrossRefGoogle Scholar
  18. 18.
    A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and A. I. Popov, Rare-Earth Ions in Magnetically Ordered Crystals (Nauka, Moscow, 1985) [in Russian].Google Scholar
  19. 19.
    A. S. Yatsenko, The Grotrian Diagrams for Multiply Charged Ions (Nauka, Novosibirsk, 2001) [in Russian].Google Scholar
  20. 20.
    A. Matkovskii, D. Sugak, S. Melnyk, P. Potera, A. Suchocki, and Z. Frukacz, J Alloys. Compd. 300–301, 395 (2000).CrossRefGoogle Scholar
  21. 21.
    G. E. Malashkevich, G. I. Semkova, A. P. Stupak, and A. V. Sukhodolov, Fiz. Tverd. Tela (St. Petersburg) 46(8), 1386 (2004) [Phys. Solid State 46 (8), 1425 (2004)].Google Scholar
  22. 22.
    D. M. Krol, R.P. van Stapele, J. H. Haanstra, T. J. A. Popma, G. E. Thomas, and A. T. Vink, J. Lumin. 37, 293 (1987).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • N. V. Vasil’eva
    • 1
  • V. V. Randoshkin
    • 1
  • V. N. Kolobanov
    • 2
  • E. B. Kryukova
    • 3
  • V. V. Mikhaĭlin
    • 2
  • N. N. Petrovnin
    • 2
  • V. G. Plotnichenko
    • 3
  • Yu. N. Pyrkov
    • 3
  • D. A. Spasskiĭ
    • 4
  • N. N. Sysoev
    • 2
  1. 1.Prokhorov Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityLeninskie gory, MoscowRussia
  3. 3.Research Center of Fiber Optics, Prokhorov Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Skobeltsyn Research Institute of Nuclear PhysicsMoscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations