Physics of the Solid State

, Volume 49, Issue 2, pp 366–370 | Cite as

Nonlinear absorption and refraction of light in a colloidal solution of CdSe/ZnS quantum dots upon two-photon resonant excitation

  • V. S. Dneprovskiĭ
  • E. A. Zhukov
  • D. A. Kabanin
  • V. L. Lyaskovskiĭ
  • A. V. Rakova
  • T. Wumaier
Low-Dimensional Systems and Surface Physics

Abstract

This paper reports on the results of an investigation into the nonlinear transmission of individual ultrashort pulses of a train generated by a mode-locked laser through a colloidal solution of CdSe/ZnS quantum dots in toluene upon two-photon resonant excitation of the fundamental optical transition. The specific features of the nonlinear transmission are explained in terms of the two-photon absorption and self-defocusing processes. Analysis of the experimental results makes it possible to separate the self-defocusing processes that are governed by the inertialess change in the refractive index due to the interaction of high-power optical pulses with bound electrons and those determined by the nonlinear change in the refractive index under the action of two-photon-excited carriers in a quantum dot.

PACS numbers

73.21.La 42.65.-k 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. M. Gibbs, G. Khitrova, and N. Peyghambarian, Non-linear Photonics (Springer, Berlin, 1990).Google Scholar
  2. 2.
    Yu. V. Vandyshev, V. S. Dneprovskiĭ, V. I. Klimov, and D. K. Okorokov, Pis’ma Zh. Éksp. Teor. Fiz. 54(8), 441 (1991) [JETP Lett. 54 (8), 442 (1991)].Google Scholar
  3. 3.
    V. S. Dneprovskii, V. I. Klimov, D. K. Okorokov, and Yu. V. Vandyshev, Solid State Commun. 81, 227 (1992).CrossRefADSGoogle Scholar
  4. 4.
    D. N. Klyshko, Physical Foundations of Quantum Electronics (Nauka, Moscow, 1986) [in Russian].Google Scholar
  5. 5.
    M. J. Kelly, Low-Dimensional Semiconductors (Clarendon, Oxford, 1995).Google Scholar
  6. 6.
    H. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, 1985; Mir, Moscow, 1988).Google Scholar
  7. 7.
    A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, and A. L. Efros, J. Opt. Soc. Am. B 10, 100 (1993).CrossRefADSGoogle Scholar
  8. 8.
    J. B. Xia, Phys. Rev. B: Condens. Matter 40, 8500 (1989).ADSGoogle Scholar
  9. 9.
    M. Nirmal, D. Norris, M. Kuno, M. Bawendi, A. L. Efros, and M. Rosen, Phys. Rev. Lett. 75, 3728 (1995).CrossRefADSGoogle Scholar
  10. 10.
    R. Tommasi, M. Lepore, M. Ferara, and I. M. Catalano, Phys. Rev. B: Condens. Matter 46, 12261 (1992).ADSGoogle Scholar
  11. 11.
    Robert A. Morgan, Seung-Han Park, Stephan W. Koch, and N. Peyghambarian, Semicond. Sci. Technol. 5, 544 (1990).CrossRefADSGoogle Scholar
  12. 12.
    A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. van Stryland, J. Opt. Soc. Am. B 9, 405 (1992).ADSGoogle Scholar
  13. 13.
    B. L. Justus, R. J. Tonucci, and A. D. Berry, Appl. Phys. Lett. 61, 3151 (1992).CrossRefADSGoogle Scholar
  14. 14.
    N. P. Xuan, J.-L. Ferrier, J. Gazengel, and G. Rivoire, Opt. Commun. 51, 433 (1984).CrossRefADSGoogle Scholar
  15. 15.
    I. Gerdova and A. Hache, Opt. Commun. 246, 205 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. S. Dneprovskiĭ
    • 1
  • E. A. Zhukov
    • 1
  • D. A. Kabanin
    • 1
  • V. L. Lyaskovskiĭ
    • 1
  • A. V. Rakova
    • 1
  • T. Wumaier
    • 1
  1. 1.Moscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations