Physics of the Solid State

, Volume 48, Issue 5, pp 815–820 | Cite as

Kinetics of isothermal nucleation in a supercooled iron melt

  • A. V. Evteev
  • A. T. Kosilov
  • E. V. Levchenko
  • O. B. Logachev
Metals and Superconductors


An isothermal kinetic diagram for the beginning of homogeneous nucleation is constructed using the molecular-dynamics model of an instantaneously supercooled iron melt near the icosahedral percolation transition temperature identified with the glass transition temperature T g . This diagram is compared with the theoretical one calculated using quantitative information obtained by analyzing the kinetics of the initial stage of growth of supercritical nuclei at temperatures higher than T g . A satisfactory coincidence of the theoretical curve with computer simulation data at temperatures higher than T g and substantial disagreement with these data below T g , where crystallization is necessarily preceded by the formation of an icosahedral percolation cluster, demonstrate the substantive influence of an icosahedral substructure on the nucleation rate predicted by the classical theory.

PACS numbers

61.20.Ja 64.60.Ak 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. H. Cohen and G. S. Grest, Phys. Rev. B: Condens. Matter 20(3), 1077 (1979).ADSGoogle Scholar
  2. 2.
    S.-P. Chen, T. Egami, and V. Vitek, Phys. Rev. B: Condens. Matter 37(5), 2440 (1988).ADSGoogle Scholar
  3. 3.
    N. N. Medvedev, A. Geiger, and W. Brostow, J. Chem. Phys. 93(11), 8337 (1990).CrossRefADSGoogle Scholar
  4. 4.
    A. V. Evteev, A. T. Kosilov, and E. V. Levchenko, Pis’ma Zh. Éksp. Teor. Fiz. 76(2), 115 (2002) [JETP Lett. 76 (2), 104 (2002)].Google Scholar
  5. 5.
    A. V. Evteev, A. T. Kosilov, and E. V. Levchenko, Zh. Éksp. Teor. Fiz. 126(3), 600 (2004) [JETP 99 (3), 522 (2004)].Google Scholar
  6. 6.
    T. Kitamura, Phys. Rep. 383(1), 1 (2003).CrossRefADSMATHGoogle Scholar
  7. 7.
    M. I. Ojovan, Pis’ma Zh. Éksp. Teor. Fiz. 79(12), 769 (2004) [JETP Lett. 79 (12), 632 (2004)].Google Scholar
  8. 8.
    F. Spaepen, Nature (London) 408(6814), 781 (2000).CrossRefADSGoogle Scholar
  9. 9.
    D. Turnbull, [!]J. Appl. Phys. 21(10), 1022 (1950).CrossRefADSGoogle Scholar
  10. 10.
    F.C. Frank, Proc. R. Soc. London, Ser. A 215, 43 (1952).ADSCrossRefGoogle Scholar
  11. 11.
    H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimaki, T. Lippmann, and G. Reiter, Nature (London) 408(6814), 839 (2000).CrossRefADSGoogle Scholar
  12. 12.
    T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, and D. M. Herlach, Phys. Rev. Lett. 89(7), 075507 (2002).Google Scholar
  13. 13.
    D. Holland-Moritz, T. Schenk, R. Bellissent, V. Simonet, K. Funakoshi, J. M. Merino, T. Buslaps, and S. Reutzel, J. Non-Cryst. Solids 312–314, 47 (2002).CrossRefGoogle Scholar
  14. 14.
    A. Di Cicco, A. Trapananti, and S. Faggioni, Phys. Rev. Lett. 91(13), 135 505 (2003).Google Scholar
  15. 15.
    J. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979; Mir, Moscow, 1982).Google Scholar
  16. 16.
    R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983).Google Scholar
  17. 17.
    V. A. Polukhin and N. A. Vatolin, Simulation of Amorphous Metals (Nauka, Moscow, 1985) [in Russian].Google Scholar
  18. 18.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).MATHGoogle Scholar
  19. 19.
    V. A. Likhachev and V. E. Shudegov, Principles of Organization of Amorphous Structures (St. Petersburg University, St. Petersburg, 1999) [in Russian].Google Scholar
  20. 20.
    H. M. Pak and M. Doyama, J. Fac. Eng., Univ. Tokyo, Ser. B 30, 111 (1969).Google Scholar
  21. 21.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Pergamon, New York, 1980; Nauka, Moscow, 1995), Part 1.Google Scholar
  22. 22.
    K. J. Smetls, Metals Reference Book (Butterworths, London, 1967; Metallurgiya, Moscow, 1980).Google Scholar
  23. 23.
    R. Yamamoto, H. Matsuoka, and M. Doyama, Phys. Status Solidi A 45, 305 (1978).Google Scholar
  24. 24.
    D. K. Belashchenko, Fiz. Met. Metalloved. 60(6), 1076 (1985).Google Scholar
  25. 25.
    A. V. Evteev and A. T. Kosilov, Rasplavy, No. 1, 55 (1998).Google Scholar
  26. 26.
    A. V. Evteev and A. T. Kosilov, Rasplavy, No. 4, 82 (2001).Google Scholar
  27. 27.
    A. V. Evteev, A. T. Kosilov, and E. V. Levtchenko, Acta Mater. 51(9), 2665 (2003).CrossRefGoogle Scholar
  28. 28.
    L. Verlet, Phys. Rev. 159(1), 98 (1967).CrossRefADSGoogle Scholar
  29. 29.
    A. V. Evteev, A. T. Kosilov, and A. V. Milenin, Pis’ma Zh. Éksp. Teor. Fiz. 71(5), 294 (2000) [JETP Lett. 71 (5), 201 (2000)].Google Scholar
  30. 30.
    A. V. Evteev, A. T. Kosilov, and A. V. Milenin, Fiz. Tverd. Tela (St. Petersburg) 43(12), 2187 (2001) [Phys. Solid State 43 (12), 2284 (2001)].Google Scholar
  31. 31.
    J. Christian, The Theory of Transformations in Metals and Alloys, Part 1: Equilibrium and General Kinetic Theory (Pergamon, Oxford, 1975; Mir, Moscow, 1978).Google Scholar
  32. 32.
    A. A. Chernov, E. I. Givargizov, Kh. S. Bagdasarov, V. A. Kuznetsov, L. N. Dem’yanets, and A. N. Lobachev, Modern Crystallography (Nauka, Moscow, 1980), Vol. 3 [in Russian].Google Scholar
  33. 33.
    A. V. Evteev, A. T. Kosilov, E. V. Levchenko, and O. B. Logachev, submitted to Zh. Éksp. Teor. Fiz. [submitted to JETP].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. V. Evteev
    • 1
  • A. T. Kosilov
    • 1
  • E. V. Levchenko
    • 1
  • O. B. Logachev
    • 1
  1. 1.Voronezh State Technical UniversityVoronezhRussia

Personalised recommendations