Physics of the Solid State

, Volume 48, Issue 2, pp 272–278

Simulation of damage accumulation kinetics with a probabilistic cellular automaton

  • D. V. Alekseev
  • G. A. Kazunina
Defects, Dislocations, and Physics of Strength

Abstract

The kinetics of damage accumulation and the evolution of damage clusters in loaded materials are simulated with a probabilistic cellular automaton controlled by three probabilities, namely, by the probabilities of free-cell occupation, cluster perimeter growth, and coalescence of clusters separated by a critical distance. The automaton algorithm is realized with Microsoft Visual Basic 6.0 as a single-document Windows application connected with Microsoft Excel, which is used as an automaton client to save and process output data. The operation of the automaton is illustrated by the example of the kinetics of damage accumulation and the evolution of a damage cluster structure compared for two simulation scenarios.

PACS numbers

61.72.-y 61.72.Bb 61.72.Cc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. N. Zhurkov, V. S. Kuksenko, V. N. Savel’ev, and U. Sultonov, Izv. Akad. Nauk SSSR, Fiz. Zemli 6, 11 (1977).Google Scholar
  2. 2.
    S. N. Zhurkov, V. S. Kuksenko, and V. A. Petrov, Dokl. Akad. Nauk SSSR 259(6), 1350 (1981).Google Scholar
  3. 3.
    V. A. Petrov, Fiz. Tverd. Tela (Leningrad) 25(10), 3110 (1983) [Sov. Phys. Solid State 25 (10), 1793 (1983)].Google Scholar
  4. 4.
    N. G. Tomilin, E. E. Damaskinskaya, and V. S. Kuksenko, Fiz. Tverd. Tela (St. Petersburg) 36(10), 3101 (1994) [Phys. Solid State 36 (10), 1649 (1994)].Google Scholar
  5. 5.
    V. I. Vettegren, V. S. Kuksenko, N. G. Tomilin, and M. A. Kryuchkov, Fiz. Tverd. Tela (St. Petersburg) 46(10), 1793 (2004) [Phys. Solid State 46 (10), 1854 (2004)].Google Scholar
  6. 6.
    D. V. Alekseev and P. V. Egorov, Dokl. Akad. Nauk 333(6), 769 (1993).Google Scholar
  7. 7.
    D. V. Alekseev, P. V. Egorov, V. V. Ivanov, A. A. Mal’shin, and A. G. Pimonov, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop. 5, 45 (1993).Google Scholar
  8. 8.
    E. E. Damaskinskaya and N. G. Tomilin, Fiz. Tverd. Tela (Leningrad) 33(1), 278 (1991) [Sov. Phys. Solid State 33 (1), 160 (1991)].Google Scholar
  9. 9.
    S. Nishiuma and S. Miyazima, Physica A (Amsterdam) 278(3–4), 295 (2000).ADSGoogle Scholar
  10. 10.
    P. A. Martynyuk, E. N. Sher, and G. V. Basheev, Fiz.-Tekhn. Probl. Razrab. Mestorozhd. Polezn. Iskop. 4, 52 (2000).Google Scholar
  11. 11.
    E. N. Sher, Fiz.-Tekhn. Probl. Razrab. Mestorozhd. Polezn. Iskop. 3, 56 (2003).Google Scholar
  12. 12.
    V. K. Vanag, Usp. Fiz. Nauk 169(5), 361 (1999) [Phys. Usp. 42, 413 (1999)].Google Scholar
  13. 13.
    H. Gould and J. Tobochnik, Computer Simulations Methods (Addison-Wesley, Boston, 1988; Mir, Moscow, 1990), Part 2.Google Scholar
  14. 14.
    D. V. Alekseev, Computer Simulation of Physical Problems in Microsoft Visual Basic (SOLON-Press, Moscow, 2004) [in Russian].Google Scholar
  15. 15.
    D. V. Alekseev and G. A. Kazunina, in Proceedings of the International Conference on Geodynamics and Stress Condition of the Interior of the Earth, Novosibirsk, Russia, 2004 (Institute of Mining, Siberian Division of the Russian Academy of Science, Novosibirsk, 2004), p. 184 [in Russian]Google Scholar
  16. 16.
    D. V. Alekseev and G. A. Kazunina, in Proceedings of the All-Russian Seminar on Modeling of Nonequilibrium Systems, Krasnoyarsk, Russia, 2004 (Institute of Computational Modeling, Siberian Division of the Russian Academy of Sciences, Krasnoyarsk, 2004), p. 4 [in Russian].Google Scholar
  17. 17.
    J. Feder, Fractals (Plenum, New York, 1988; Mir, Moscow, 1991).Google Scholar
  18. 18.
    G. G. Malinetskiĭ and A. B. Potapov, Modern Problems of Nonlinear Dynamics (URSS, Moscow, 2002), p. 358 [in Russian].Google Scholar
  19. 19.
    G. G. Malinetskiĭ and A. V. Podlazov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineĭnaya Din. 5(5), 89 (1997).Google Scholar
  20. 20.
    A. V. Podlazov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineĭnaya Din. 9(1), 49 (2001).MATHGoogle Scholar
  21. 21.
    P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A: At., Mol., Opt. Phys. 38(1), 364 (1988).ADSMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • D. V. Alekseev
    • 1
  • G. A. Kazunina
    • 1
  1. 1.Kuzbass State Technical UniversityKemerovoRussia

Personalised recommendations