Skip to main content
Log in

Ar Ion Irradiation Effects on the Characteristics of Ru|Pt|n-GaN Schottky Barrier Diodes

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The present study reports the effects of 650-keV Ar2+ ion irradiation on the structural, optical, and device characteristics of Ru|Pt|n-GaN Schottky barrier diodes (SBDs). Ion irradiation induces the broadening of the GaN X-ray diffraction peaks due to induced structural deformities. The photoluminescence spectroscopy intensity decreases with the increase in the fluence of ions. The recombination of charge carriers induced by the geometrical distortions, and the formation of defects states, shifts the peak positions to shorter wavelengths. The electrical characteristics of these devices exhibit significant changes due to modification at the interface and charge transport properties after Ar2+ ion irradiation. The charge-transport properties are affected by these deformities at higher fluences and attributed to the contributions of various current conduction mechanisms, including defect-assisted tunnelling and generation–recombination (G–R) currents along with thermionic emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Y. S. Katharria, S. Kumar, P. S. Lakshmy, D. Kanjilal, and A. T. Sharma, J. Appl. Phys. 102, 044301 (2007).

    Article  ADS  Google Scholar 

  2. W. Monch, Rep. Prog. Phys. 53, 221 (1990).

    Article  ADS  Google Scholar 

  3. A. Kumar, T. Kumar, A. Hähnel, D. Kanjilal, and R. Singh, Appl. Phys. Lett. 104, 033507 (2014).

    Article  ADS  Google Scholar 

  4. A. Kumar, T. Singh, M. Kumar, and R. Singh, Curr. Appl. Phys. 14, 491 (2014).

    Article  ADS  Google Scholar 

  5. C. Sharma, A. K. Visvkarma, R. Laishram, A. Kumar, D. S. Rawal, S. Vinayak, and R. Singh, Microelectron. Reliab. 105, 113565 (2020).

    Article  Google Scholar 

  6. A. Kumar, A. Hähnel, D. Kanjilal, and R. Singh, Appl. Phys. Lett. 101, 153508 (2012).

    Article  ADS  Google Scholar 

  7. D. W. Runton, B. Trabert, J. B. Shealy, and R. Vetury, IEEE Microwave Mag. 14, 82 (2013).

    Article  Google Scholar 

  8. H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P. R. Chalker, M. Charles, K. J. Chen, N. Chowdhury, R. Chu, C. de Santi, M. M. de Souza, S. Decoutere, L. di Cioccio, B. Eckardt, et al., J. Phys. D: Appl. Phys. 51, 163001 (2018).

    Article  ADS  Google Scholar 

  9. S. O. Kucheyev, J. S. Williams, and S. J. Pearton, Mater. Sci. Eng. R 33, 51 (2001).

    Article  Google Scholar 

  10. A. Kumar, J. Dhillon, S. Verma, P. Kumar, K. Asokan, and D. Kanjilal, Semicond. Sci. Technol. 33, 085008 (2018).

    Article  ADS  Google Scholar 

  11. T. Mohanty, S. Dhounsi, P. Kumar, A. Tripathi, and D. Kanjilal, Surf. Coat. Technol. 203, 2410 (2009).

    Article  Google Scholar 

  12. K. Iniewski, Nano-Semiconductors: Devices and Technology (CRC, Boca Raton, FL, 2011).

    Book  Google Scholar 

  13. J. L. Benton, S. Libertino, and P. Kringhój, J. Appl. Phys. 82, 120 (1997).

    Article  ADS  Google Scholar 

  14. S. Kumar, X. Zhang, V. K. Mariswamy, V. R. Reddy, A. Kandasami, A. Nimmala, S. V. S. N. Rao, J. Tang, S. Ramakrishnna, and K. Sannathammegowda, Materials 13, 1299 (2020).

    Article  ADS  Google Scholar 

  15. S. Libertino, S. Coffa, and J. L. Benton, Phys. Rev. B 63, 195206 (2001).

    Article  ADS  Google Scholar 

  16. S. Fatima, J. Wong-Leung, J. Fitz Gerald, and C. Jagadish, Appl. Phys. Lett. 72, 3044 (1998).

    Article  ADS  Google Scholar 

  17. B. G. Svensson, C. Jagadish, A. Hallén, and J. Lalita, Phys. Rev. B 55, 10498 (1997).

    Article  ADS  Google Scholar 

  18. A. Kumar, R. Singh, P. Kumar, U. B. Singh, K. Asokan, P. A. Karaseov, A. I. Titov, and D. Kanjilal, J. Appl. Phys. 123, 161539 (2018).

    Article  ADS  Google Scholar 

  19. P. Bogdanski, P. Mary, and M. Toulemonde, Nucl. Instrum. Methods Phys. Res., Sect. B 62, 388 (1992).

    Google Scholar 

  20. P. K. Giri and Y. N. Mohapatra, J. Appl. Phys. 84, 1901 (1998).

    Article  ADS  Google Scholar 

  21. P. Kodali, M. Hawley, K. C. Walter, K. Hubbard, N. Yu, J. R. Tesmer, T. E. Levine, and M. Nastasi, Wear 205, 144 (1997).

    Article  Google Scholar 

  22. S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou, and G. Li, Phys. Rev. B 62, 7510 (2000).

    Article  ADS  Google Scholar 

  23. N. N. K. Reddy and V. R. Reddy, Bull. Mater. Sci. 35, 53 (2012).

    Article  Google Scholar 

  24. T. Sairam, P. Bhatt, A. Kumar, H. Kumar, and C. P. Safvan, Phys. Plasmas 22, 113503 (2015).

    Article  ADS  Google Scholar 

  25. Anon Test Method Standard for Semiconductor Devices, MIL-STD-750E (2007).

  26. R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath, and F. A. Garner, Nucl. Instrum. Methods Phys. Res., Sect. B 310, 75 (2013).

    Google Scholar 

  27. M. V. Kumar, S. Verma, V. Shobha, B. Jayashree, D. Kanjilal, and S. Krishnaveni, J. Mater. Sci. Res. 3, 24 (2014).

    Google Scholar 

  28. M. V. Kumar, S. Verma, K. Asokan, V. Shobha, S. P. Karanth, and S. Krishnaveni, ECS J. Solid State Sci. Technol. 5, P384 (2016).

    Article  Google Scholar 

  29. A. B. Garg, R. Mittal, and R. Mukhopadhyay, AIP Conf. Proc. 1349, 1 (2011).

    ADS  Google Scholar 

  30. S. K. Cheung and N. W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  ADS  Google Scholar 

  31. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  ADS  Google Scholar 

  32. P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki, Appl. Phys. Lett. 63, 2676 (1993).

    Article  ADS  Google Scholar 

  33. S. A. Goodman, F. D. Auret, and W. E. Meyer, Nucl. Instrum. Methods Phys. Res., Sect. B 90, 349 (1994).

    Google Scholar 

  34. A. P. Karmarkar, B. Jun, D. M. Fleetwood, R. D. Schrimpf, R. A. Weller, B. D. White, L. J. Brillson, and U. K. Mishra, IEEE Trans. Nucl. Sci. 51, 3801 (2004).

    Article  ADS  Google Scholar 

  35. D. J. Mazey, R. S. Nelson, and R. S. Barnes, Philos. Mag. 17, 1145 (1968).

    Article  ADS  Google Scholar 

  36. V. R. Reddy and N. N. K. Reddy, Superlatt. Microstruct. 52, 484 (2012).

    Article  ADS  Google Scholar 

  37. N. Manikanthababu, S. Vajandar, N. Arun, A. P. Pathak, K. Asokan, T. Osipowicz, T. Basu, and S. V. S. Nageswara Rao, Appl. Phys. Lett. 112, 131601 (2018).

    Article  ADS  Google Scholar 

  38. S. K. Gautam, J. Singh, R. G. Singh, N. Gautam, P. Trivedi, and F. Singh, IEEE Trans. Electron. Dev. 66, 1475 (2019).

    Article  ADS  Google Scholar 

  39. S. Kumar, M. V. Kumar, and S. Krishnaveni, Semiconductors 54, 169 (2020).

    Article  ADS  Google Scholar 

  40. T. S. Shafai and T. D. Anthopoulos, Thin Solid Films 398, 361 (2001).

    Article  ADS  Google Scholar 

  41. A. S. Riad, Phys. B 270, 148 (1999).

    Article  ADS  Google Scholar 

  42. M. Prokesch, in Solid-State Radiation Detectors: Technology and Applications (CRC, Boca Raton, 2015), p. 17.

  43. M. Nikl, Phys. Status Solidi A 178, 595 (2000).

    Article  ADS  Google Scholar 

  44. R. Armitage, Q. Yang, and E. R. Weber, J. Appl. Phys. 97, 073524 (2005).

    Article  ADS  Google Scholar 

  45. G. Santana, O. De Melo, J. Aguilar-Hernández, R. Mendoza-Pérez, B. Monroy, A. Escamilla-Esquivel, M. López-López, F. de Moure, L. Hernández, and G. Contreras-Puente, Materials 6, 1050 (2013).

    Article  ADS  Google Scholar 

  46. A. Ionascut-Nedelcescu, C. Carlone, A. Houdayer, H. J. von Bardeleben, J. Cantin, and S. Raymond, IEEE Trans. Nucl. Sci. 49, 2733 (2002).

    Article  ADS  Google Scholar 

  47. M. Thaik, U. Hömmerich, R. N. Schwartz, R. G. Wilson, and J. M. Zavada, Appl. Phys. Lett. 71, 2641 (1997).

    Article  ADS  Google Scholar 

  48. Z. Sitar, M. J. Paisley, B. Yan, J. Ruan, W. J. Choyke, and R. F. Davis, J. Vac. Sci. Technol. B 8, 316 (1990).

    Article  Google Scholar 

  49. Y.-W. Lee, M. S. P. Reddy, B.-M. Kim, and C. Park, Opt. Mater. 81, 109 (2018).

    Article  ADS  Google Scholar 

  50. F. Ben Nasr, H. Guermazi, and S. Guermazi, Eur. Phys. J. Plus 131, 195 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the staff and technicians at IUAC, New Delhi, India, for providing access to Low Energy Beam Ion irradiation, IV, and CV measurement facilities. The authors are also grateful to the Central facility for nanotechnology (CFN), and the School of Physics (UGC-NRC), University of Hyderabad, for providing access to necessary experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sannathammegowda.

Ethics declarations

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Mariswamy, V.K., Kumar, A. et al. Ar Ion Irradiation Effects on the Characteristics of Ru|Pt|n-GaN Schottky Barrier Diodes. Semiconductors 54, 1641–1649 (2020). https://doi.org/10.1134/S1063782620120155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620120155

Keywords:

Navigation